
On the Ramsey Equilibrium

with Heterogeneous Consumers

and Endogenous Labor Supply∗

Stefano BOSI†and Thomas SEEGMULLER‡

January 8, 2007

Abstract
In this paper we address the question of deterministic cycles in a Ram-

sey model with heterogeneous in�nite-lived agents and borrowing con-
straints, augmented to take into account the case of elastic labor supply.
Under usual restrictions, not only we show that the steady state is unique,
but also we clarify its stability properties through a local analysis. We
�nd that, in many cases, the introduction of elastic labor supply promotes
convergence by widening the range of parameters for saddle-path stabil-
ity, and endogenous cycles can eventually disappear. These results are
robustly illustrated by means of canonical examples in which consumers
have separable, KPR or homogeneous preferences.
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1 Introduction

Growth theorists are usually confronted with the question of convergence of an
economic system. In neoclassical model of capital accumulation, commonly ad-
dressed questions are whether economies converge to the same long-run equilib-
rium, how convergence takes place and whether is monotonic, how fundamentals
a�ect the stability properties of equilibrium.1

The most in�uential growth model is undoubtedly Ramsey which is char-
acterized, in its basic version, by a representative agent with exogenous labor
supply, saddle-path stability, equilibrium uniqueness and optimality. In order
to add a degree of realism, economic literature has not only introduced vari-
ous kinds of market imperfections, but also considered elastic labor supply and
agents' heterogeneity.

On the one side, a class of papers have been devoted in the last decade to
shed a light on the interplay between the consumption-labor arbitrage and the
mechanism of capital accumulation in models with a representative consumer.
The reader is referred, among others, to De Hek (1998), a one-sector model
with an in�nite-lived agent; to Bosi, Magris and Venditti (2005), a two-sector
model; to Ladron-de-Guevara, Ortiguiera and Santos (1997), an endogenous
growth model; to Nourry (2001) and Nourry and Venditti (2006), overlapping
generations economies; to, eventually, Pintus (2006) and Garnier, Nishimura
and Venditti (2006), models with externalities.

On the other side, there are papers with heterogeneous consumers which
focus on the convergence of capital accumulation and distribution in the long
run. Unlike the case with a representative agent, consumers' heterogeneity
promotes borrowing transactions. The existence of borrowing constraints plays
a key role on the dynamics of capital accumulation. Becker (1980), Becker and
Foias (1987, 1994) and Sorger (1994) study economies where agents discount
future di�erently, while Hernandez (1991) consider heterogenous but equally
patient consumers.

Surprisingly, few works have investigated the role of elastic labor supply
on equilibrium transition and the long run when consumers are heterogeneous.
In this respect, most papers focus on heterogeneity in wealth (Sorger (2000),
Ghiglino and Sorger (2002), Garcia-Penalosa and Turnovsky (2006)).

In this paper, we are interested in the e�ects of endogenous labor supply
on the saddle-path stability when consumers' heterogeneity concerns not only
their endowments but also their preferences. In this connection, we consider
in�nite-lived consumers with preferences which are additively separable over
time, but depend on consumption and leisure at each period. Heterogeneity is
now threefold and turns on capital wealth, time preference and intra-temporal
preferences. In addition, in line with Becker (1980), Becker and Foias (1987,
1994), Hernandez (1991) and Sorger (1994), we assume that consumers cannot
borrow against their future labor income. This borrowing constraint implicitly

1Barro and Sala-i-Martin (1995) provide an introductory but representative survey of the
literature.
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means that, in contrast to Le Van, Manh Hung and Vailakis (2006), markets
are incomplete.

Under these assumptions, we show that, as in Becker (1980), Becker and
Foias (1987, 1994), and Sorger (1994), the most patient household owns the
whole capital stock in a neighborhood of the steady state, whereas the others
consume their per-period labor income. In the rest of the paper, since we
are mainly interested in local dynamics around the steady state, we can focus
directly on such equilibria with extreme distribution of capital.

Under usual hypotheses, we prove the existence of a unique steady state
in contrast with Sorger (2000) who obtains a continuum of long-run equilibria.
Sorger's assumption of a common discount factor across the agents prevents a
long-run concentration of wealth in the hands of the most patient individual.
Survival of many capital owners in the long run entails also a sensitivity of the
steady state to disaggregate initial conditions, namely the initial distribution of
wealth, accounting for a continuum of stationary equilibria.

When there are no impatient agents in the economy, our model gets closer to
De Hek (1998) with a representative agent. However, normality assumptions on
consumption and leisure prevents us to obtain multiple steady states in contrast
with him, who obtains multiplicity under very unusual conditions.

In order to study the convergence to the (unique) steady state, while under-
lining the role of heterogeneous preferences and elastic labor supply, we focus on
their e�ects on the saddle-path stability and the occurrence of a �ip bifurcation.
In economies with inelastic labor supply (Becker and Foias (1994)), the occur-
rence of endogenous cycles requires su�ciently weak capital-labor substitution.
Introducing leisure in the utility functions, we �nd that the impatient agent's
preferences play a role on the stability properties of the steady state.

We derive conditions for saddle-path stability and the occurrence of two-
period cycles under very general preferences in consumption and leisure. Then,
in order to provide a more explicit characterization and to check the robustness
of saddle-path stability, we focus on four particular cases.

First, the representative agent's case is nested in the general model and de-
serves some comparative comment with the existing literature. Second, hetero-
geneous preferences are considered, but separable in consumption and leisure,
in order to simplify and clarify conditions for cycles. Third, a KPR2 speci-
�cation is taken into account to prove that an elastic labor supply promotes
stability. Eventually, the case of homogeneous preferences con�rms how robust
saddle-path stability is.

In the �rst case (representative (patient) agent), we gets closer to De Hek
(1998). Under very usual restrictions, such as normality, we �nd a unique capital
path, which prevents the economy from deterministic �uctuations and, shortly,
we stress his lack of robustness.

In the other cases, heterogeneity is restored. When preferences are separa-
ble in consumption and leisure, the impatient agents' intertemporal substitution
in consumption matters. More precisely, when their elasticity of intertemporal

2See King, Plosser and Rebelo (1988).
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substitution becomes greater than one, the introduction of elastic labor supplies
promotes stability by making conditions for cycles more demanding in terms of
technological parameters. However, the opposite conclusion holds when elastic-
ity of intertemporal substitution in consumption is less than one.

The class KPR of utility functions is used in growth literature to lighten
restrictions on intra-temporal preferences in order to get positive growth rates.
In this case, the patient agent's preferences matter, while the impatient agents'
ones play no role on dynamics. More precisely, convergence to the steady state
requires an elasticity of intertemporal substitution in consumption not too weak
and a leisure utility not too concave, whatever the elasticity of capital-labor
substitution.

Finally, when preferences are homogeneous, the patient agent's degree of
homogeneity becomes a key parameter. We prove that when it is su�ciently
close to one (including the CES and the Cobb-Douglas cases), we recover the
saddle-path stability, whatever shape the other fundamentals have.

To understand why preferences play a role on stability properties, we mind
that, when labor supply is inelastic, instability ensues from a negative response
of the patient agent's income to a rise in the capital stock. When labor supplies
become elastic, they also a�ect his income. In addition, the endogenous labor
supplies vary because an increase in the capital stock raises the real wage. Since
preferences underlie and determine the elasticities of labor supply with respect
to the real wage, unsurprisingly they have a great in�uence on dynamics.

The rest of the paper is organized as follows. The general model with het-
erogeneous consumers, elastic labor and borrowing constraints is presented in
Section 2. Section 3 is devoted to compute a two-dimensional system represent-
ing the equilibrium dynamics. Existence and uniqueness of the steady state are
proved in Section 4. Section 5 focuses on the stability properties and the occur-
rence of bifurcations under unspeci�ed preferences. Sections 6 characterizes an
economy with representative consumer. Sections 7 to 9 revisit the general �nd-
ings in the case of separable, KPR or homogeneous preferences, respectively. In
Section 10, we provide an economic interpretation of the results, keeping in mind
the stability issue. Section 11 concludes, while technical details are gathered in
the Appendix.

2 A growth model with heterogeneous households

We address the saddle-path stability issue in a discrete time growth model with
heterogeneous agents and borrowing constraints. Consumers are di�erently en-
dowed with capital and have di�erent preferences. In this respect, we assume a
twofold kind of heterogeneity in tastes: on the one hand, heterogeneous discount
factors; on the other hand, di�erent instantaneous utilities in consumption and
leisure across the households.
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2.1 Consumers

There is a �nite number (1 + n) of heterogeneous in�nite lived agents, who are
identi�ed by a progressive label i = 0, 1, . . . , n according to their time preference,
that is, to the (decreasing) ranking of their discount factors:

0 ≤ βn ≤ . . . ≤ β1 < β0 < 1 (1)

We notice that a degree of heterogeneity between the more patient agent
(i = 0) and the others is required at least.

At each period, the consumer i is endowed with one unit of time that he
shares between labor and leisure. We denote his consumption and labor supply
at period t with cit and lit. Preferences are represented by an utility function
in consumption and leisure which is separable over time:

∞∑
t=0

βt
iui (cit, 1− lit) (2)

Consumer i maximizes (2) under a sequence of budget constraints:

cit + kit+1 −∆kit ≤ rtkit + wtlit (3)

and a sequence of borrowing constraints:

kit ≥ 0 (4)

Notation is quite usual: r and w denote the interest rate and the wage,
respectively, while ∆ ≡ 1 − δ with δ ∈ (0, 1) the depreciation rate of capital.
The initial (heterogeneous) endowments ki0 ≥ 0 are given, with at least one
strictly positive.

Assumption 1 The utility function ui (ci, 1− li) is de�ned on [0,+∞) ×
[0, 1] for every i = 0, . . . , n; it is C2 on (0,+∞) × (0, 1), increasing in each
argument and concave:3

ui11 < 0 < ui1 (5)
ui22 < 0 < ui2 (6)

ui12ui21 ≤ ui11ui22 (7)

and satis�es the boundary conditions limci→0 ui1 (ci, 1− li) /ui2 (ci, 1− li) =
+∞, limli→1 ui1 (ci, 1− li) /ui2 (ci, 1− li) = 0 on (0,+∞)× (0, 1).

We also introduce a kind of normality between consumption and leisure.

Assumption 2

ui11/ui1 < ui21/ui2 and ui22/ui2 < ui12/ui1 (8)
3In the following, we set uij ≡ ∂ui (x1, x2) /∂xj for j = 1, 2 and uijk ≡ ∂uij (x1, x2) /∂xk

for k = 1, 2.
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We observe that a more usual de�nition of normality is entailed by inequal-
ities (8) jointly with the consumption-leisure arbitrage (ui2 = wui1) as equilib-
rium condition in Proposition 1 below.

As intuition suggests and economic literature con�rms,4 the patient agents
will hold the whole stock of capital near the steady state. In order to characterize
the equilibrium with high concentration of capital, we need a formal statement.

Proposition 1 Near a steady state, the impatient agents (i = 1, . . . , n) end up
with no capital (kit = 0), while the patient one (i = 0) ends up to hold the entire
amount of capital (k0t > 0).

On the one hand, a consumption-leisure arbitrage condition holds for every
agent including the patient one (i = 0, 1, . . . , n):

ui2 (cit, 1− lit) = ui1 (cit, 1− lit) wt (9)

On the other hand, the patient capitalist (i = 0) and the impatient agents
(i ≥ 1) have di�erent sequences of budget constraints:

c0t + k0t+1 = Rtk0t + wtl0t (10)
cit = wtlit, for i = 1, . . . , n (11)

and smooth consumption di�erently over time: the capitalist according to a Euler
equation:

u01 (c0t, 1− l0t)
u01 (c0t+1, 1− l0t+1)

= β0Rt+1 (12)

whereas the impatient consumers according to the following inequality:

ui1 (wtlit, 1− lit)
ui1 (wt+1lit+1, 1− lit+1)

> βiRt+1 (13)

Individual transversality conditions are also satis�ed.5

Proof. See the Appendix.

As equation (12) suggests, the patient consumer's discount factor plays a
great role in determining capital accumulation. To lighten notation, we will set
from now on β ≡ β0 and refer equivalently to the more patient agent as �the
capitalist�.

For the sake of conciseness, we introduce also the elasticities of marginal
utility through which slope and concavity of the utility functions will be char-
acterized: [

εi11 εi12

εi21 εi22

]
≡

[
ui11ci

ui1

ui12(1−li)
ui1

ui21ci

ui2

ui22(1−li)
ui2

]
(15)

4Among others, the reader is referred to the seminal work of Becker (1980).
5Since kit+1 → 0 for every i ≥ 1, what actually matters is the capitalist's transversality

condition:
lim

t→+∞
βtu01 (c0t, 1− l0t) kt+1 = 0 (14)
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We notice that the concavity restrictions (5) and (6) (on the left-hand-side)
and (7) now become:

εi11 < 0, εi22 < 0 and εi11εi22 ≥ εi12εi21 (16)

for i = 0, 1, . . . , n, respectively. Normality inequalities (8) (Assumption 2) also
simplify:

εi11 < εi21 and εi22 < εi12 (17)

for i = 0, 1, . . . , n.

2.2 Firms

We denote the aggregate capital and labor with kt and lt, respectively. The
representative �rm produces the �nal good yt = F (kt, lt) ≡ f (at) lt with a
constant returns to scale technology and a degree of capital intensity at ≡ kt/lt,
in order to maximize the pro�t πt ≡ yt − rtkt − wtlt at every period t. The
intensive production function f satis�es standard neoclassical requirements.

Assumption 3 The intensive production f (a) is a continuous function of
the capital-labor ratio a ≥ 0, positive-valued and di�erentiable, as many times as
needed, for a > 0, with f ′′ (a) < 0 < f ′ (a) and f(0) = 0, lima→0 f ′ (a) = +∞,
lima→+∞ f ′ (a) = 0.

Firms' pro�t maximizing behavior entails that production takes place in
period t so that the capital-labor ratio at equates the real rental rate of capital
services rt with the marginal productivity of capital and the real wage wt with
the marginal productivity of labor.

rt = f ′ (at) ≡ r (at) (18)
wt = f (at)− f ′ (at) at ≡ w (at) (19)

It is not unworthy to highlight the underlying relations existing between
the elasticities of the interest rate with respect to capital and labor rkk/r,
rll/r, the analogous elasticities of the real wage wkk/w, wll/w, the capital
share in total income s (a) ≡ f ′ (a) a/f (a) ∈ (0, 1) and the elasticity of capital-
labor substitution: σ (a) ≡ [af ′ (a) /f (a)− 1] f ′ (a) / [af ′′ (a)] > 0. Standard
computations give krk/r = −lrl/r = − [1− s(a)] /σ(a) and kwk/w = −lwl/w =
s(a)/σ(a).

2.3 Equilibrium

An intertemporal equilibrium is a sequence of prices (or, dually, of quantities)
that clears the markets in every period. Equilibria in good and labor markets
require:

ct + kt+1 −∆kt = F (kt, lt) and lt =
n∑

i=0

lit, (20)
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where ct ≡
∑n

i=0 cit denotes the aggregate consumption, for t = 0, 1, . . . ,+∞.
We observe that equation (20) is immediately obtained by aggregating budget
constraints (10) and (11) across the individuals. Since the patient agent ends
up to hold all the capital stock, we have also the following condition:

kt = k0t (21)

In order to �nd the equilibrium path prevailing around the steady state
and characterized by a concentration of capital in the hands of a single agent
(equation (21)), we derive the dynamic system and study the local dynamics
around its stationary solution.

3 Dynamic system

Equation (9) is informative about the slope of the patient agent's labor supply
l0. We keep (9) with i = 0 and we solve (locally) for l0:

l0t = l0 (wt, c0t) (22)

Substituting (11) in (9), we transform the consumption-arbitrage condition
of the ith impatient agent in an implicit equation relating his labor supply to
the real wage:

ui2 (wtlit, 1− lit) = ui1 (wtlit, 1− lit) wt (23)
or, locally,

lit = l∗i (wt) (24)
We observe that the labor supply of an impatient agent just depends on the

real wage, while the patient agent's labor supply depends also on his consump-
tion demand. To ensure that labor supplies are correctly de�ned as functions,
we use the assumptions made above on the shapes of utility and production
functions.

Lemma 2 If liml0t→0 u02 (c0t, 1− l0t) /u01 (c0t, 1− l0t) < wt and Assumptions
1-3 are satis�ed, the functions lit = l∗i (wt) and l0t = l0 (c0t, wt) are well de�ned.

Proof. See the Appendix.

Since the purpose of the section is deriving a dynamic system, we need to
reduce the number of variables, aggregating, for instance, the labor supplies. In
this respect, putting together equations (19), (20), (22) and (24), we obtain:

lt = l0 (w (kt/lt) , c0t) +
n∑

i=1

l∗i (w (kt/lt)) (25)

that is an implicit equation relating the aggregate labor supply l to the aggregate
capital k and the individual consumption c0. More explicitly, but locally under
the usual hypotheses of the implicit function theorem, we get:

lt ≡ l (kt, c0t) (26)
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At the very core of dynamics is the capitalist's behavior: Replacing expres-
sions (18), (19), (22) and (26) in his budget constraint (10) and in his Euler
equation (12), eventually, we obtain the equilibrium dynamics:

u01 (c0t, 1− l0 (w (kt/l (kt, c0t)) , c0t))
u01 (c0t+1, 1− l0 (w (kt+1/l (kt+1, c0t+1)) , c0t+1))

= β

[
∆ + r

(
kt+1

l (kt+1, c0t+1)

)]
(27)

c0t + kt+1 −∆kt = r

(
kt

l (kt, c0t)

)
kt + w

(
kt

l (kt, c0t)

)
l0

(
w

(
kt

l (kt, c0t)

)
, c0t

)
(28)

where the initial condition k0 > 0 is given6 and the transversality condition (14)
holds.

Dynamic system (27)-(28) deserves some comments. It holds at every period,
t = 0, 1, . . . ,+∞, and de�nes an intertemporal sequence (c0t, kt)t≥0. Usually,
the dynamic system of the Ramsey model is written in the representative agent's
pair of variables (k, c). The capital stock k is a predetermined state variable,
while the consumption expenditure c jumps in order to make the equilibrium
path positive and compatible with the transversality condition. In our model,
the aggregate capital remains predetermined, but the aggregate consumption is
replaced by the disaggregate capitalist's consumption.7

In the following, �rst, the uniqueness of the steady state will be stated; then,
saddle-path stability and the existence of �ip and period-doubling bifurcations
will be characterized through the analysis of a linear approximation of system
(27)-(28) around the steady state.

4 Steady state

A stationary state of dynamic system (27)-(28) is a solution (k, c0) = (kt, c0t)
of the following system for all t = 0, 1, . . . ,+∞:

1
β
−∆ = r

(
k

l (k, c0)

)
(29)

c0 =
1− β

β
k + w

(
k

l (k, c0)

)
l0

(
w

(
k

l (k, c0)

)
, c0

)
where the functions l0 (w, c0) and l (k, c0) are now de�ned at the steady state
by (22) and (26), respectively. In the next proposition, we analyze the existence
and the uniqueness of such stationary solution:

Proposition 3 Under Assumptions 1-3, there exists a unique steady state.

6The initial aggregate capital stock is de�ned by k0 =
∑n

i=0 ki0. The equilibria considered
in this section implicitly requires an initial distribution of capital close enough to that of
Proposition 1.

7Writing an equivalent system in the pair of variables (k, c), where c is the aggregate
consumption, or in the pair (k, l), will complicate needlessly the size of equations under study,
whereas the associated eigenvalues are invariant to the choice of variables.
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Proof. See the Appendix.

In contrast to Sorger (2000), there is no room for a continuum of stationary
solutions parametrized by the initial distribution of wealth. In Sorger's paper,
agents have heterogeneous initial capital endowments, but share the same pref-
erences and in particular the same discount factor. Since in our case the more
patient agent ends up to hold the whole capital stock, the stationary distribution
of wealth is determined by his heterogeneous discount factor and the existence
of borrowing constraints, and does not meet Sorger's conditions for multiplicity.

Eventually, we notice that, setting n = 0 and lt = l0 (wt, c0t), we get the
optimal growth model with representative consumer as particular case. In this
respect, Proposition 3 still applies. Our conventional assumptions entail results
which appear in open contrast with those obtained by De Hek (1998) who
analyzes an aggregate optimal growth model with leisure-depending preferences.
In order to reconcile the papers, we simply observe that his multiplicity of steady
states rest on some unusual assumptions, namely the lack of normality between
consumption and leisure.8

5 On the saddle-path stability

Convergence to the steady state is the core of the paper. This issue is ad-
dressed through a local analysis, i.e., through the analysis of a neighborhood of
the steady state, where the intertemporal equilibrium de�ned in Proposition 1
precisely holds.

In order to characterize the stability properties of the steady state and the
occurrence of local bifurcations, we proceed by linearizing the dynamic system
(27)-(28) around the steady state (k, c0) and computing the Jacobian matrix
J , evaluated at this steady state. Local dynamics are represented by a linear
system (dkt+1/k, dc0t+1/c0)

T = J (dkt/k, dc0t/c0)
T . In the following, we exploit

the fact that the trace T and the determinant D of J are the sum and the product
of the eigenvalues, respectively. As emphasized by Grandmont, Pintus and de
Vilder (1998), the stability properties of the system, that is, the location of the
eigenvalues with respect to the unit circle, can be better characterized in the
(T,D)-plane (see Figures 1-3).

In concrete terms, we evaluate the characteristic polynomial P (α) ≡ α2 −
Tα + D at −1, 0, 1. Along the line (AC), one eigenvalue is equal to 1, i.e.,
P (1) = 1 − T + D = 0. Along the line (AB), one eigenvalue is equal to −1,
i.e., P (−1) = 1 + T + D = 0. On the segment [BC], the two eigenvalues are
complex and conjugate with unit modulus, i.e., D = 1 and |T | < 2. Therefore,
inside the triangle ABC, the steady state is a sink, i.e., locally indeterminate
(D < 1 and |T | < 1 + D). It is a saddle point if (T,D) lies on the right sides
of both (AB) and (AC) or on the left sides of both of them (|1 + D| < |T |).
It is a source otherwise. A (local) bifurcation arises when an eigenvalue crosses

8In Section 6, the unconventional equilibrium transitions found by De Hek (1998) are
questioned on the same basis.
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the unit circle, that is, when the pair (T,D) crosses one of the loci (AB),
(AC) or [BC]. (T,D) depends on the structural parameters. We choose a
parameter of interest and we study how (T,D) moves with it in the (T,D)-
plane. More explicitly, according to the changes in the bifurcation parameter,
a transcritical bifurcation (generically) occurs when (T,D) goes through (AC),
a �ip bifurcation (generically) arises when (T,D) crosses (AB), whereas a Hopf
bifurcation (generically) emerges when (T,D) goes through the segment [BC].

The expressions of T and D involve the elasticities of labor supply, which
are a central link in the chain of e�ects accounting for the degree of stabil-
ity. From (22) and (24), one de�nes these elasticities as ξ0 ≡ (∂l0/∂w) (w/l0)
for the capitalist, ξi ≡ l∗′i (w) w/li for the impatient agents. The average elas-
ticity of labor supply ξ ≡

∑n
i=0 λiξi is naturally de�ned, by weighting the

individual elasticities with the individual labor shares in total labor supply
λi ≡ li/l, i = 0, 1, . . . , n.9 Another average elasticity of labor supply of in-
terest is ξ̃ ≡

∑n
i=1 λiξi/ (1− λ0), which takes in account only the impatient

agents' elasticities ξi's and summarizes the role of their preferences on the dy-
namics. Clearly, ξ = λ0ξ0 + (1− λ0) ξ̃. We also denote the elasticity of capital-
labor substitution with σ and the capital share in total income evaluated at
the steady state with s. Eventually, we need to introduce a reduced parameter
ρ ≡ βr (1− s) /s = (1− β∆) (1− s) /s, before presenting the determinant and
the trace:10

D (σ) =
1
β
− ρ

β

1

ξ̃ − ξ̃
∗

+ σ
s

1
1−λ0

(30)

T (σ) = 1 +
1
β
− ρ

β

1

ξ̃ − ξ̃
∗

+ σ
s

1
1−λ0

1
S

(31)

where

ξ̃
∗

≡ 1− l0
l − l0

ε011 + ρ (ε011 − ε021)
ε011ε022 − ε012ε021

< 0 (32)

S ≡
[
1− (1− β + ρ) (ε021 − ε011) (1− l0) + (1− β + ρλ0) (ε012 − ε022) l

(ε011ε022 − ε012ε021) (l − l0)

]−1

(33)

In order to apply the geometrical method introduced by Grandmont, Pintus
and de Vilder (1998), we need to choose carefully the parameter with respect
to which the bifurcation analysis is leaded. An ideal choice is a signi�cant pa-
rameters from an economic point of view, which has, in addition, a linear image
in the (T,D)-plane: a half-line is unambiguously determined by the origin and
the slope. Fortunately, the elasticity of capital-labor substitution σ meets both
the criteria:11 The locus Σ ≡ {(T (σ) , D (σ)) : σ ≥ 0} is either a (connected)

9Notice also that ∑n
i=0 λi = 1.

10The detailed computations of J , T and D are relegated in the Appendix.
11In a Ramsey model with heterogeneous consumers and borrowing constraints, but in-

elastic labor supplies, Becker and Foias (1994) choose the same parameter to make the (�ip)
bifurcation analysis, while following a di�erent (non-geometrical) approach.
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segment or an (unconnected) half-line in the (T,D)-plane (see Figures 1-3) with
an origin (σ = 0):

D (0) =
1
β
− ρ

β

1

ξ̃ − ξ̃
∗ (34)

T (0) = 1 +
1
β
− ρ

β

1

ξ̃ − ξ̃
∗

1
S

(35)

an endpoint (σ = +∞):

(T (+∞) , D (+∞)) = (1 + 1/β, 1/β) (36)

and a slope D′ (σ) /T ′ (σ) = S. From (33), we note that S /∈ [0, 1]. Moreover,
the endpoint (T1(+∞), D1(+∞)) is on the line (AC), above the point C.
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Figure 1: S > 1

The locus Σ is either a segment or a half-line. Even if the line including
Σ always crosses the line (AB),12 the intersection of (AB) with Σ could be

12The case S = −1 is generically omitted.
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Figure 2: S < −1

empty. In order to characterize the shape of Σ and provide clear-cut bifurcation
conditions, we need to detail the properties of trace and determinant as functions
of σ.

Since D′ (σ) > 0, when σ increases from 0 to +∞, the point (T (σ) , D (σ))
moves always upward along Σ from the origin (T (0) , D (0)), to the endpoint
(T (+∞) , D (+∞)). If Σ crosses the line (AB), then a �ip bifurcation generically
occurs for a positive value of σ, say σF , corresponding to the intersection and
solving the equation D (σ) = −T (σ)− 1.

A quick look to the (T,D)-plane will convince the reader that few infor-
mations are required to locate Σ and determine the stability properties of the
steady state.

(1) Is the origin (T (0) , D (0)) above or below the endpoint (1 + 1/β, 1/β)?

(2) Is the origin (T (0) , D (0)) above or below the �ip line (AB)?

(3) Is the slope steeper (|S| > 1) or �atter (−1 < S < 0)?
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Figure 3: −1 < S < 0

We �rst �nd explicit conditions for points (1) and (2).

(1) The necessary and su�cient condition for the origin to stay above the
endpoint is D (0) > 1/β, that is

ξ̃ < ξ̃
∗

(37)

In this case, Σ is a half-line starting from D = D (0) > 1/β, going up to
D = +∞ and jumping to D = −∞ for σ = σ∞, and going up to D = 1/β, with
σ∞ ≡ s (1− λ0)

(
ξ̃
∗
− ξ̃
)
.

(2) The necessary and su�cient condition for the origin (T (0) , D (0)) to lie
above the line (AB) is D (0) > −T (0)− 1 or, equivalently,

κ/
(
ξ̃ − ξ̃

∗)
< 1 (38)

where
κ ≡ ρ (1 + S) / [2 (1 + β) S] (39)
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Using these two results, we discuss now the stability properties of the steady
state and the occurrence of bifurcations considering two cases for the slope.

(3) We assume |S| > 1 and −1 < S < 0 in order.

(3.1) |S| > 1: κ is positive and three subcases matter (see Figures 1 and 2):

(3.1.1) If ξ̃ < ξ̃
∗
, inequalities (37) and (38) are satis�ed. (T (0), D(0))

is above the endpoint (T (+∞) , D (+∞)) and the line (AB). Σ is a
jumping half-line that crosses the line (AB) at σ = σF . Therefore,
the steady state is a source for 0 < σ < σF and a saddle for σ > σF .

(3.1.2) If ξ̃
∗

< ξ̃ < ξ̃
∗

+ κ, inequalities (37) and (38) are no longer
satis�ed. The origin is below the endpoint and the line (AB). Σ is a
segment that crosses the line (AB). Therefore, the steady state is a
source for 0 < σ < σF and a saddle for σ > σF .

(3.1.3) If ξ̃
∗

+ κ < ξ̃, inequality (37) is not satis�ed, while (38) is. The
origin is below the endpoint and above the line (AB). Σ is a segment
that does not cross the line (AB), which means that the steady state
is a saddle whatever σ.

(3.2) −1 < S < 0: κ is negative and three subcases matter (see Figure 3):

(3.2.1) If ξ̃ < ξ̃
∗

+ κ, inequalities (37) and (38) are satis�ed. The origin
is above the endpoint and the line (AB). Σ is a jumping half-line
that crosses the line (AB). Therefore, the steady state is a source for
0 < σ < σF and a saddle for σ > σF .

(3.2.2) If ξ̃
∗
+κ < ξ̃ < ξ̃

∗
, inequality (37) is satis�ed, while (38) no longer

holds. The origin is above the endpoint, but below the line (AB). Σ
is a jumping half-line that does not cross the line (AB). The steady
state is a saddle whatever σ.

(3.2.3) If ξ̃
∗

< ξ̃, inequality (37) is no longer satis�ed, while (38) is. The
origin is below the endpoint and above the line (AB). Σ is a segment
that does not cross the line (AB). As in the previous subcase, the
steady state is a saddle for all σ.

Summing up, we notice that, when ξ̃ < ξ̃
∗

+ κ, the steady state is a source
for 0 < σ < σF and a saddle for σ > σF , and the system undergoes a �ip
bifurcation at σ = σF (subcases (3.1.1), (3.1.2), (3.2.1)). In contrast, when
ξ̃
∗

+ κ < ξ̃, we get a saddle, whatever σ (subcases (3.1.3), (3.2.2), (3.2.3)).
All these necessary and su�cient conditions are summarized in the next

proposition.

Proposition 4 Let

σF ≡ s (1− λ0)
(
ξ̃
∗

+ κ − ξ̃
)

(40)
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where ξ̃
∗
and κ are given by (32) and (39), respectively. The following results

generically hold.
If the impatient agents' average elasticity of labor supply is greater than a

threshold, that is, ξ̃ ≥ ξ̃
∗

+ κ, the steady state is a saddle, whatever the degree
of capital-labor substitution σ > 0.

If the impatient agents' average elasticity of labor supply is smaller than a

threshold, that is, ξ̃ < ξ̃
∗
+κ, the steady state is a source when inputs are rather

complementary (0 < σ < σF ) and it is a saddle when they are rather substi-
tutable (σ > σF ). When σ crosses σF , the system undergoes a �ip bifurcation.

This proposition states that the steady state is always locally determinate.
However, saddle-path stability and local convergence is not always ensured.
When the substitution between capital and labor is su�ciently weak, the steady
state can loose stability through the occurrence of a cycle of period two.

Proposition 4 is as general as somewhat cryptic. In order to make the role of
preferences on (in)stability more explicit and provide an economic interpretation
of bifurcation, we have to go beyond the generality of proposition and specify
the fundamentals. Four canonical cases are retained.

At the �rst stage, we recover the particular case of a representative agent in
order to compare our results with De Hek (1998).

At the second stage, we come back to heterogeneous consumers and we ana-
lyze three classes of preferences commonly employed in economic literature: sep-
arable, KPR13 and homogeneous utility functions in consumption and leisure.

6 Representative agent

In order to compare our model to the benchmark, we reduce the number of
agents to one, the patient agent. In this case, we are also able to criticize De Hek
(1998), who characterize transitional dynamics with representative consumer
and elastic labor supply under somewhat unconventional assumptions.

Setting n = 0, we reduce agents' heterogeneity to the patient agent, now
representative. Formally, let λ0 = 1: the average elasticity of labor supply
becomes ξ = ξ0, while the locus Σ becomes a horizontal segment de�ned by:

Σ = {(T,D) : D = 1/β, T (+∞) ≤ T ≤ T (0)} (41)

where still T (+∞) = 1 + 1/β, but now

T (0) = 1 +
1
β

+
ρ (1− β + ρ)

β

ε021 − ε011 + (ε012 − ε022) l0/ (1− l0)
ρ (ε021 − ε011)− ε011

Σ lies entirely on the right-hand side of the endpoint (1/β, 1 + 1/β) in the
region of the saddle points. Indeed, it is enough to observe that the slope S
is zero (expression (33)), that T ′ (σ) < 0 (expression (31)) and that T (0) >

13Popularized by King, Plosser and Rebelo (1988), these preferences allow a positive growth
rate in endogenous growth models.
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T (+∞) = 1 + 1/β, under the standard concavity and normality assumptions
(16) and (17).

Let us summarize these �ndings as follows.

Corollary 5 Without heterogeneity, the steady state is always a saddle and the
convergence to the steady state is monotonic.

In contrast to De Hek (1998), we have proved that neither non-monotonic
trajectories nor endogenous cycles occur in a one-sector optimal growth model
with leisure in the utility function. The key assumption is that of normality
(inequalities (17) entailing T (0) > T (+∞)). As a matter of fact, De Hek
not only introduces a production function which depends on past labor supply
and is open to criticism; but also, more questionably, does not impose that
consumption and leisure are normal goods at a macroeconomic level.

In the following, we come back to the model with heterogeneous agents and
borrowing constraints. As seen above, to understand the role of preferences on
saddle-path stability, we specify three classes of utility functions, widely used in
economic models: the separable, the KPR and the homogeneous preferences.

7 Separable utilities

Assume the utility functions of all consumers to be separable in consumption and
leisure, i.e., take the form ui (cit, 1− lit) ≡ vi (cit) + wi (1− lit), with v′i (ci) >
0, w′i (1− li) > 0, v′′i (ci) ≤ 0, w′′i (1− li) ≤ 0. Still applying the results of
Proposition 4, we will able to capture the role of concavity in consumption and
leisure on convergence.

Separability and concavity of the utility functions of all consumers i =
0, 1, ..., n entail εi12 = εi21 = 0 and εi11 < 0, εi22 < 0, respectively. Then,
the critical values for the impatient agents' average elasticity of labor supply
and the elasticity of capital-labor substitution, involved in Proposition 4, sim-
plify:

ξ̃
∗

≡ − 1 + ρ

1− λ0
λ0ξ0 (42)

ξ̃
∗

+ κ =
1

1− λ0

[
σI

s
− λ0ξ0

(
1 +

ρ

2
3 + β + ρ

1 + β

)]
σF ≡ σI − s

[
(1− λ0) ξ̃ + λ0ξ0

(
1 +

ρ

2
3 + β + ρ

1 + β

)]
(43)

where ξ0 = − (1− l0) / (l0ε022) is now the capitalist's (partial) elasticity of labor
supply and:

σI ≡
sρ

1 + β

(
1− λ0 +

1− β + ρλ0

2ε011

)
(44)

It is not unworthy to focus on the limit case with inelastic labor supply,
already investigated by Becker and Foias (1987, 1994), in order to make ideas
clearer about the role of endogenous labor supplies on the stability properties.
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7.1 Inelastic labor supply

When agents supply labor inelastically, the leisure elasticity εi22 falls to −∞
and, according to formulas (42), (70) and (72), ξi = ξ̃ = ξ̃

∗
= 0 for every

i ≥ 0. By Proposition 4, the occurrence of a �ip bifurcation needs ξ̃ < ξ̃
∗

+ κ,
that is, now, a positive critical elasticity σF = σI . In the light of equation
(44), the patient consumer is required to have a su�ciently weak intertemporal
substitution in consumption, i.e., −1/ε011 < 2 (1− λ0) / (1− β + ρλ0).

According to expression (44), the bifurcation value σI decreases in the elas-
ticity of intertemporal substitution in consumption −1/ε011 > 0. Since σI <
sρ/ (1 + β) and ρ = (1− β∆) (1− s) /s, we get σI < 1 − s. Consequently,
in a model with inelastic labor supply, the existence of cycles and instability
requires the capital income (rk) to decrease when capital increases. A weak
elasticity of intertemporal substitution in consumption −1/ε011 > 0 prevents
the intertemporal arbitrage (see Becker and Foias (1987, 1994)).

We further notice that, in contrast to the case with endogenous labor supply,
the preferences of impatient consumers play no role on the stability properties
of the steady state and the occurrence of cycles.

7.2 Elastic labor supply

The opposite case with elastic labor supply is now considered. Without a sig-
ni�cant loss of generality, we assume that all the impatient agents (i = 1, . . . , n)
share the same instantaneous utility function and, in consequence, the same
labor supply li ≡ m as well as the same elasticities εi11 ≡ ε11, εi22 ≡ ε22. Ac-
cording to (72) (see the Appendix), their individual (and average) elasticity of
labor supply becomes:

ξ̃ = − 1 + ε11

ε11 + ε22m/ (1−m)
(45)

while the capitalist's elasticity of labor supply with respect to the real wage is
de�ned as above by ξ0 = − (1− l0) / (l0ε022) > 0. In the following, we consider
two polar cases.

Assume �rst that the impatient agents' consumption is su�ciently substi-
tutable over time (−1/ε11 > 1). Hence, labor supply turns out to be positive-
sloped for all the agents. We notice that the more elastic the labor supplies
(higher ξ0 and ξ̃),14 the weaker the bifurcation elasticity of capital-labor substi-
tution σF (see (43)).15 This means that the range of parameter compatible with
the saddle-path stability (σF ,+∞) widens with the elasticity of labor supply
and restrictions for instability and cycles become more demanding than under
an exogenous labor supply.

If the impatient agents' intertemporal substitution in consumption is su�-
ciently weak (−1/ε11 < 1), then, according to (45), ξ̃ becomes negative (while

14Notice that the less concave the disutilities of labor, the more elastic the labor supplies.
15In any case, σF < σI because the term into brackets on the RHS of (43) is negative.
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ξ0 still remains positive) and the critical elasticity σF can be greater than σI .
By direct inspection of equation (43), this requires:

ξ̃ < − λ0ξ0

1− λ0

(
1 +

ρ

2
3 + β + ρ

1 + β

)
We deduce that σF > σI if the patient agent's labor supply is not too elastic

and the negative aggregate elasticity ξ̃ not too close to zero, that is, the impa-
tient agents' elasticity of intertemporal substitution in consumption (−1/ε11)
remains su�ciently weak. In this case, the introduction of a consumption-leisure
arbitrage promotes instability and cycles, because the range of parameters for
saddle-path stability (σF ,+∞) shrinks and the �ip bifurcation occurs under a
higher substitutability between capital and labor.

Now, let us provide two examples based on non-separable utility functions.
Two popular speci�cations in macrodynamic literature are retained.

8 KPR preferences

In this section, we consider preferences à la King, Plosser and Rebelo (1988).
They have the advantage of lightening restrictions on the structural parameters
in order to obtain positive growth rates in models with capital accumulation.
Agent i's utility function is speci�ed as follows:

ui (ci, 1− li) ≡ [civi (1− li)]
1+εi / (1 + εi) if εi ≤ 0, εi 6= −1 (46)

ui (ci, 1− li) ≡ ln ci + ln vi (1− li) if εi = −1 (47)

The parameter −1/εi is still interpretable as elasticity of intertemporal sub-
stitution in consumption. In addition, we need to de�ne (�rst and second or-
der) elasticities of leisure utility: εvi

≡ v′i (1− li) (1− li) /vi (1− li) and εv′i
≡

v′′i (1− li) (1− li) /v′i (1− li). The KPR functional form (46) implies:[
εi11 εi12

εi21 εi22

]
=
[

εi (1 + εi) εvi

1 + εi εv′i
+ εiεvi

]
(48)

Usual assumptions on preferences are maintained.

Assumption 4 (KPR) vi (1− li) is a continuous function on [0, 1], dif-
ferentiable as many times as needed, increasing and concave on (0, 1), that is,
εv′i

≤ 0 ≤ εvi . We further assume:

(1 + 2εi) εvi
− εiεv′i

≤ 0 (49)

Assumption 4 deserves some comments. First, εv′i
≤ 0 ≤ εvi

and εi ≤ 0
imply εi11 ≤ 0, εi22 ≤ 0, while (49) is equivalent to εi11εi22 ≥ εi12εi21. So,
concavity conditions (16) are met. Second, normality conditions (17) ensue
from εv′i

≤ εvi
.

Let us now de�ne Q ≡ (1− l0) (1− β + ρ)+ l (1− β + ρλ0)
(
εv0 − εv′0

)
. Ap-

plying Proposition 4 to KPR preferences, we make the bifurcation through which
cycles arise more explicit.
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Corollary 6 The system undergoes a �ip bifurcation at σ = σF > 0, if and
only if both the inequalities are satis�ed:

2εv0 − εv′0
> (1− l0) (1 + β) /[ρ(l − l0)] (50)

− 1
ε0

<
(l − l0)

(
2εv0 − εv′0

)
− (1− l0) (1 + β) /ρ

(l − l0) εv0 + (1− l0) (1 + β) + Q/2
(51)

Otherwise saddle-path stability prevails whatever σ > 0.

Proof. See the Appendix.

We observe that, when preferences are KPR, the elasticities of labor supply
of impatient consumers (i ≥ 1) become zero, which implies in turn ξ̃ = 0.
Therefore, preferences of impatient agents play no role on local dynamics, as it
was the case under inelastic labor supply.

As seen above, a su�ciently low intertemporal substitution in patient agent's
consumption (−1/ε0) is needed to recover instability and the occurrence of en-
dogenous cycles. This result is also in accordance with what happens under
exogenous labor supply. However, by direct inspection of (51), we notice that a
higher degree of concavity of v0 (patient agent's utility of leisure) also promotes
macroeconomic instability. Indeed, taken εv0 as given, the left-hand side of (50)
and the right-hand side of (51) increase with the degree of concavity −εv′0

, mak-
ing both the inequalities and instability more likely. Conversely, since the elas-
ticity of labor supply with respect to the real wage ξ0 = (1− l0) /

[
l0
(
εv0 − εv′0

)]
decreases with −εv′0

, a more elastic labor supply of the patient agent promotes
saddle-path stability and dynamic convergence.

9 Homogeneous utilities

One of the most popular classes of non-separable preferences is represented by
homogeneous utility functions. In contrast to most existing papers, we don't
reduce the analysis to homogeneity of degree one, but we allow the utility func-
tions to have a degree less or equal to one.

The degrees of homogeneity and concavity are closely related.16 The former
plays a key role on the stability properties, as the latter did in the KPR case.
That's why taking into account a degree less than one matters.

Assumption 5 (homogeneity) The utility function ui (cit, 1− lit) is ho-
mogeneous of degree νi ≤ 1, for every i = 0, . . . , n.

Restriction νi ≤ 1 is needed to ensure the concavity and meet the second
order conditions for intertemporal maximization. We also notice that Cobb-
Douglas and CES utitlity functions satisfy Assumption 5, being homogeneous
of degree one.

16The higher the degree of homogeneity, the lower the degree of concavity.
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As in the KPR case, the patient agent matters more than the others in
the stability analysis. We will show, precisely, that the steady state becomes
a saddle point as soon as the patient agent's degree ν0 becomes close to one,
while, in contrast, the occurrence of cycles requires low degrees of homogeneity.
In this connection, we need an additional notation.

si ≡ ui1ci/ui ∈ (0, 1) (52)

will denote the agent i's consumption share in total utility and εi ≡ ciui11/ui1 <
0 the elasticity of marginal utility with respect to consumption, while −1/εi will
represent, as usual, the elasticity of intertemporal substitution in consumption.

Under Assumption 5, the homogeneity property and normality between con-
sumption and leisure entail, respectively:17

si < νi ≤ 1 and εiνi + (1− νi) si < 0 (53)

for every i = 0, . . . , n. Under properties (53), Proposition 4 is explicitly revis-
ited.

Proposition 7 Proposition 4 still holds, where now:

ξ̃ = −
n∑

i=1

li (1− li)
l − l0

(
1 +

νi − si

εiνi + (1− νi) si

)
(54)

ξ̃
∗

= − 1− l0
(1− ν0) (l − l0)

[
ρ + ε0

ν0 − s0

ε0ν0 + (1− ν0) s0

]
< 0 (55)

ξ̃
∗

+ κ = ξ̃
∗

+
ρ

1 + β

[
1− ρ + (1− β) (1 + l − l0)

2 (1− ν0) (l − l0)

]
(56)

Proof. See the Appendix.

Proposition 7 gives necessary and su�cient conditions for saddle-path sta-
bility, instability and deterministic cycles. In order to appreciate the economic
intuition behind, we provide su�cient conditions for saddle-path stability in
terms of the most signi�cant parameter, the degree of homogeneity.

Corollary 8 Under Assumption 5, if the degree of homogeneity of the patient
agent is su�ciently high, that is,

ν0 > 1− ρ + (1− β) (1 + l − l0)
2 (l − l0)

(57)

while the impatient agents' elasticities of intertemporal substitution in consump-
tion are su�ciently large, that is,

−1/εi > 1/ (1− si) (58)

for every i = 1, . . . , n, then the steady state is a saddle point (there is no room
for cycles).

17See the proof of Proposition 7 in the Appendix
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Proof. See the Appendix.

Condition (58) is somewhat close to those we got above (see for instance, the
separable case with elastic labor supply). Condition (57), which involves only
the patient consumer's degree of homogeneity, is more puzzling and deserves
great regard.

The next corollary stresses the prominence of (57), by asserting that restric-
tions (58) become super�uous to get saddle-path stability, when ν0 lies in a
su�ciently small neighborhood of one.

Corollary 9 Under Assumption 5, when the capitalist's degree of homogeneity
ν0 is su�ciently close to one the steady state is saddle-point stable and cycles
are de�nitely ruled out.

In particular, when the preferences of the patient agent are homogeneous of
degree one, saddle-path stability prevails.

Proof. See the Appendix.

Corollaries (8)-(9) undoubtedly show how the degree of homogeneity in the
patient agent's utility matters to determine the stability properties of the econ-
omy. Homogeneous utilities of degree one, so popular in economic literature,
have a very speci�c impact on dynamics and must be questioned on the ground
of robustness. In this model, they imply dynamic convergence whatever the
other parameter values, whereas stability is no longer ensured as soon as the
degree of homogeneity lowers.

Eventually, we observe that lower the degree of homogeneity, higher the
degree of concavity, more likely instability and cycles. We recover some results
already found in the separable case (namely, under elastic labor supply) and in
the KPR case. In both the cases the impact of concavity through the elasticity
of labor supply emerges as dominant feature.

10 Interpretation

An economic intepretation of a bifurcation is a somewhat di�cult task. In
order to simplify this task, while preserving the main mechanism behind the
emergence of cycles and the role of labor supply, it is not unworthy to compare
the cases with elastic and inelastic labor supply.

The patient agent's budget constraint is the valuable information we need
to start the analysis (see also Becker and Foias (1994)). In equilibrium, the
constraints reduces to

c0t + kt+1 −∆kt = rtkt + wtl0t ≡ It

The economic intuition is based on the (possibly) negative response of the in-
come It to an increase in kt.
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As announced, we �rst assume an inelastic labor supply: for simplicity, each
agent supplies one unit of time. Therefore, l0t = 1 and lt = 1 + n. Using (18)
and (19), we obtain:

It = f

(
kt

1 + n

)
+ f ′

(
kt

1 + n

)
nkt

1 + n
(59)

We notice immediately that, in the case of a representative agent (n = 0), It

is increasing in kt. On the contrary, when consumers are heterogeneous (n > 0),
It can decrease in kt, if f ′ (kt/ (1 + n)) kt lowers enough, which in turn requires
a su�ciently weak capital-labor substitution, i.e., σ < 1 − s. In this case, the
future capital stock kt+1 decreases if the consumption c0t is not too sensitive
to changes in income It. This explains why a su�ciently weak elasticity of
intertemporal substitution in consumption is necessary for the occurrence of
cycles and instability and why concavity promotes cycles too.

Keeping in mind the basic mechanism, we can tackle the case of endogenous
labor supply which makes more complex the income response to a change in
capital.

The crucial question of the paper, we cannot get round, is why, in many
cases, endogenous labor promotes saddle-path stability? Under elastic labor
supply, the income It becomes:

It = f (at) l0t + f ′ (at) at

n∑
i=1

lit (60)

with lt =
∑n

i=0 lit and at = kt/lt. All the labor supplies lit (i = 0, 1, ..., n)
depend on the real wage which is increasing in kt. Therefore, an increase in kt

generates two new e�ects: on the one hand, an impact on It through at, that is,
through f (at) and f ′ (at) at; on the other hand, an impact through the weights
l0t and

∑n
i=1 lit.

In order to evaluate the �rst e�ect, we observe that lt is an implicit func-
tion of kt and c0t (equation (26)), and the capital-labor ratio is as well: at =
kt/l (kt, c0t) ≡ a (kt, c0t). Then, using (73) (see the Appendix), we obtain:

∂a/a

∂k/k
=

σ (a) /s (a)

σ (a) /s (a) + λ0ξ0 + (1− λ0) ξ̃

As soon as λ0ξ0 + (1− λ0)ξ̃ > 0, this elasticity is less than one,18 which means
that, following an initial increase in kt, the endogenous labor response reduces
the increase of the capital-labor ratio and possibly dampens oscillations along
non-monotonic capital paths.

In order to evaluate the second e�ect (on the weights l0t and
∑n

i=1 lit),
we consider the at's appearing directly in equation (60) as �xed. Under this
restriction, the derivative of (60) with respect to kt is given by:

k
[
f (a) λ0ξ0 + af ′ (a) (1− λ0) ξ̃

] s (a)
σ (a)

∂a

∂k
(61)

18We notice that, when labor supply is inelastic, the capital-labor ratio is equal to k/ (1 + n).
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The second e�ect also promotes stability if the income It increases with kt

through the weights l0t and
∑n

i=1 lit. So, oscillations and endogenous cycles
are dampened if (61) is positive, which depends on the sign of the term into
the brackets and the sign of ∂a/∂k. Both of them are positive if ξ̃ is not too
negative:

ξ̃ > −min
{

λ0ξ0

s (a) (1− λ0)
,
λ0ξ0 + σ (a) /s (a)

1− λ0

}
The addition of both the e�ects can explain why, when the slope of the impa-
tient agents' labor supply is not too negative or the degree of concavity of leisure
utility is su�ciently weak, endogenous labor supply promotes saddle-path sta-
bility. One immediately sees that the same conclusion holds for the patient
agent, through ξ0.

Finally, let us notice that, as was the case under inelastic labor supply,
endogenous cycles and instability occur more likely if c0t is little sensitive to
variations in kt.19 This requires a su�ciently weak elasticity of intertemporal
substitution in consumption, a high degree of concavity of consumption utility
or a degree of homogeneity su�ciently less than one.

11 Conclusion

We have addressed the question of saddle-path stability and dynamic conver-
gence in an economy with heterogeneous consumers and elastic labor supply. In
line with Becker (1980), Becker and Foias (1987, 1994), Hernandez (1991) and
Sorger (1994), we have also supposed that agents face borrowing constraints,
representing a kind of market incompleteness.

As in the case of inelastic labor supply, a state with a positive amount of
capital in the hands of some impatient household cannot be stationary. This
means that in a neighborhood of a steady state, the capital stock is wholly owned
by the most patient agent, whereas the others consume their labor income.
Focusing on such equilibria, we �rst establish the existence and uniqueness of
the steady state.

At a second stage, we analyze the local dynamics to address the saddle-path
stability and convergence issues. In particular, we focus on the role of preferences
on the stability properties of the steady state and the occurrence of endogenous
cycles. As was the case in economies with inelastic labor supply, instability and
endogenous cycles require su�ciently weak capital-labor substitution. However,
now, the taste for leisure and the impatient agents' behavior have a great in-
�uence on dynamics. We �rst derive conditions for saddle-path stability and
the occurrence of �ip bifurcation under general preferences in consumption and
leisure. Then, we apply our results to particular classes of preferences widely
employed in macrodynamics.

In order to �x ideas, it is not unworthy to recover the representative agent as
a limit case. We �nd that the steady state is always a saddle point, in contrast

19We observe that, under elastic labor supply, c0t also a�ects l0t and, consequently, lt and
at.
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to De Hek (1998) who obtains persistent �uctuations. However, his analysis is
somewhat misleading, because founded on questionable assumptions such as the
lack of normality in consumption and leisure.

Coming back to the model with heterogeneous consumers, we make explicit
the role of preferences on dynamics, by presenting three classes of utility func-
tions commonly used in economic literature.

When preferences are separable in consumption and leisure, the introduc-
tion of elastic labor supply promotes saddle-path stability if the impatient agents
easily smooth consumption over time. If conversely, their intertemporal substi-
tution in consumption is too weak, there is room for instability and deterministic
cycles.

When preferences are KPR (King, Plosser and Rebelo (1988)), the impatient
agents' utility functions cease from having any in�uence on dynamics, while only
the patient agent's tastes matter. An elasticity of intertemporal substitution in
consumption which is not too weak and a leisure utility which is not too concave
are needed to ensure convergence, whatever the technological parameters.

Eventually, when preferences are homogeneous, the degree of homogeneity of
the patient agent's utility naturally emerges as crucial parameter. In particular,
we prove a somewhat intriguing result: when the degree is close to one, saddle-
path stability prevails.

12 Appendix

Proof of Proposition 1. The ith agent maximizes the intertemporal util-
ity function (2) under the sequences of budget constraints (3) and borrowing
constraints (4). The �rst order conditions reduce to the Euler equations:

ui1 (cit, 1− lit)
ui1 (cit+1, 1− lit+1)

≥ βiRt+1, with equality if kit+1 > 0 (62)

the consumption-labor arbitrages: ui2 (cit, 1− lit) = ui1 (cit, 1− lit) wt, the bud-
get constraints (3) (now binding), and, eventually, the individual transversality
conditions: limt→+∞ βt

iui1 (cit, 1− lit) kit+1 = 0.
As seen above, heterogeneity in time preference leads the more patient agent

to hold the entire capital stock near a stationary solution. More precisely,
equation (62) becomes R ≤ 1/βi in a neighborhood of the steady state. But,
since β0 > βi for i > 0, the equilibrium interest factor will prevail, will be the
cheapest rental factor:

R = min {1/βi}
n
i=0 = 1/β0 (63)

(assumption (1)), and 1/βi > R at the stationary equilibrium for i ≥ 1. Around
the steady state, ui1 (cit, 1− lit) /ui1 (cit+1, 1− lit+1) > βiRt+1, for i ≥ 1, ac-
cording to equations (62) and (63). Firms borrow the cheapest capital from the
individual i = 0, while individuals i ≥ 1 end up to hold no capital: k0t > 0 and
kit = 0 for i ≥ 1.
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The capitalist's equation (62) (i = 0) will hold with equality, jointly with the
consumption-leisure arbitrage (9), the budget constraint (10) and the transver-
sality condition.

The impatient agents' budget constraints (3) simplify to (11), because now
kit = 0 (for i ≥ 1). The consumption-leisure arbitrages (9) still hold, where cit

is given by (11). Eventually, the transversality conditions are satis�ed.
Inequalities (13) must hold at every period in order to ensure the capitalistic

distribution as an intertemporal equilibrium.

Proof of Lemma 2. First, we prove that l0 (w, c0) is well de�ned from:

ϕ0 (l0, c0) = w (64)

where ϕ0 (l0, c0) ≡ u02 (c0, 1− l0) /u01 (c0, 1− l0). We observe that under As-
sumption 1, liml0→1− ϕ0 (l0, c0) = +∞. ϕ0 crosses at least once w because,
by hypothesis, liml0→0 u02 (c0, 1− l0) /u01 (c0, 1− l0) < w. Moreover, under
Assumption 2, ∂ϕ0 (l0, c0) /∂l0 = − (u022 − u012u02/u01) /u01 > 0. Then, ϕ0

crosses w only once and the solution of (64) is unique.
Second, we prove the existence of the function li (w) for i ≥ 1. We need to

solve the implicit equation:
ϕi (li) = w (65)

where, as above, ϕi (li) ≡ ui2 (wli, 1− li) /ui1 (wli, 1− li). Given w, we have,
under Assumption 1, limli→0+ ϕi (li) = 0 and limli→1− ϕi (li) = +∞. By con-
tinuity, at least a solution of equation (65) exists. In addition, since ϕ′i (li) =
[ui12ui2/ui1 − ui22 + w (ui21 − ui11ui2/ui1)] /ui1 > 0 under Assumption 2, the
function ϕi crosses w only once. The solution li (w) of equation (65) is thus
unique.

Proof of Proposition 3. As a preliminary result, we observe that, under
Assumption 1, the labor supply of each consumer is always smaller than one,
i.e., li < 1 for all i ≥ 0. Now, notice that a steady state is de�ned by:

r (k/l) = 1/β −∆

l = l0 (w (k/l) , c0) +
n∑

i=1

li (w (k/l))

c0 = (r (k/l)− δ) k + w (k/l) l0 (w (k/l) , c0)

Under Assumption 3, there exists a unique solution k/l ≡ α to the �rst equation,
where α > 0 is a constant. The wage w (k/l) = w(α) is constant too and the
functions li (w) as well (denote them l̄i). Finally, the agent 0's labor supply is
de�ned by:

u02 ((1/β − 1) k + wl0, 1− l0) = wu01 ((1/β − 1) k + wl0, 1− l0) (66)
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and determines a continuous function l0 = l̂0 (k), with k = αl. Since the sum of
continuous functions is continuous,

λ (l) ≡ l̂0 (αl) +
n∑

i=1

l̄i (67)

is continuous. A steady state is a solution to the equation l = λ (l), where l
belongs to (0, 1 + n). Using our preliminary result, we deduce that λ (0) < 1+n.
Moreover, we have:

λ′ (l) = −α
1− β

β

(
w +

c0

1− l0

ε022 − ε012

ε011 − ε021

)−1

< 0,

according to (17). Thus, there is a unique solution l∗ = λ (l∗), which is a steady
state and determines the other variables, namely k∗ and l∗0.

Local Dynamics. In order to get local information on dynamics, we linearize
the dynamic system (27)-(28) around the steady state. Equations (27) and (28)
become, respectively:

− u012 (1− l0)
u01

l0
1− l0

l0ww

l0

(
wkk

w
+

wll

w

lkk

l

)
dkt

k

+
[
u011c0

u01
− u012 (1− l0)

u01

l0
1− l0

(
l0c0c0

l0
+

l0ww

l0

wll

w

lc0c0

l

)]
dc0t

c0

+
[
u012 (1− l0)

u01

l0
1− l0

l0ww

l0

(
wkk

w
+

wll

w

lkk

l

)
− βr

(
rkk

r
+

rll

r

lkk

l

)]
dkt+1

k

−
[
u011c0

u01
− u012 (1− l0)

u01

l0
1− l0

(
l0c0c0

l0
+

l0ww

l0

wll

w

lc0c0

l

)
+ βr

rll

r

lc0c0

l

]
dc0t+1

c0

= 0
(68)

and([
∆ +

(
1 +

rkk

r
+

rll

r

lkk

l

)
r

]
k + wl0

(
wkk

w
+

wll

w

lkk

l

)(
1 +

l0ww

l0

))
dkt

k

+
(

rll

r

lc0c0

l
rk + wl0

[
l0c0c0

l0
+

wll

w

lc0c0

l

(
1 +

l0ww

l0

)]
− c0

)
dc0t

c0

− k
dkt+1

k
= 0

(69)

To achieve the reduction in elasticities, we need those of labor supply. We
know that l0 = l0 (w, c0), l∗i = li (w) and l = l (k, c0) are respectively given by
(9), (23) and (25). Total di�erentiating (9), we get:

εw0 ≡ l0ww

l0
=

1− l0
l0

1
ε012 − ε022

≡ ξ0 > 0 (70)

εc0 ≡ l0c0c0

l0
=

1− l0
l0

ε021 − ε011

ε022 − ε012
< 0 (71)
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Totally di�erentiating (23), we obtain:

ξi ≡
l∗′i (w) w

li
=

1 + εi11 − εi21

εi21 − εi11 + (εi12 − εi22) li/ (1− li)
(72)

for i = 1, . . . , n, while, totally di�erentiating (25), we �nd:

lkk

l
=

λ0εw0 +
∑n

i=1 λiξi

λ0εw0 +
∑n

i=1 λiξi + σ/s
(73)

lc0c0

l
=

λ0εc0σ/s

λ0εw0 +
∑n

i=1 λiξi + σ/s
(74)

where λi is the individual labor share in total labor supply. Substituting the
elasticities (70), (71), (73) and (74) in equations (68) and (69), we get a reduced
system:

− (1 + ρx)
dkt+1

k
+ [λ0εc0 (1 + ρx)− z (ε011ε022 − ε012ε021) /ε012]

dc0t+1

c0

= −dkt

k
+ [λ0εc0 − z (ε011ε022 − ε012ε021) /ε012]

dc0t

c0

−β
dkt+1

k
= [ρ (1− λ0 − λ0εw0) /z − 1]

dkt

k

+ [ρλ0 (1− εc0 [1 + (1− λ0 − λ0εw0) /z]) + 1− β]
dc0t

c0

where

x ≡ 1− ε022/ε012 (75)
z ≡ σ/s + ξ (76)

Afterwards, we evaluate the Jacobian matrix J of system (27)-(28) at the
steady state:[

− (1 + ρx) λ0εc0 (1 + ρx)− z (ε011ε022 − ε012ε021) /ε012

−β 0

]−1

[
−1 λ0εc0 − z (ε011ε022 − ε012ε021) /ε012

ρ (1− λ0 − λ0εw0) /z − 1 ρλ0 (1− εc0 [1 + (1− λ0 − λ0εw0) /z]) + 1− β

]
We deduce the trace T and the determinant D of the Jacobian matrix using

(75) and (76).

Proof of Corollary 6. We apply the results obtained in Proposition 4. Using
(48), the critical values ξ̃

∗
and κ are explicitly computed:

ξ̃
∗

=
1− l0
l − l0

ρ− ε0

(1 + 2ε0) εv0 − ε0εv′0

(< 0) (77)

κ =
ρ

1 + β

(
1 +

Q

2 (l − l0)
[
(1 + 2ε0) εv0 − ε0εv′0

]) (78)
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Since ξi = 0 for all i ≥ 1 (expression (72)), we have also ξ̃ = 0. As high-
lighted in Proposition 4, a �ip bifurcation generically arises if and only if
σF = s (1− λ0)

(
ξ̃
∗

+ κ
)

> 0, which requires ξ̃
∗

+ κ > 0. Using (49), (77)
and (78), this last inequality holds if and only if (50) and (51) are satis�ed.

Proof of Proposition 7. Since the utility function ui is homogeneous of
degree νi, ui (µci, µ (1− li)) = µνiui (ci, 1− li) for any positive real number µ.
Homogeneity implies some well-known properties: si1 + si2 = νi, εi11 + εi12 =
νi − 1 = εi21 + εi22 and

si1

si2
=

νi − 1− εi22

νi − 1− εi11
(79)

for i = 0, . . . , n, where si1 ≡ ui1ci/ui and si2 ≡ ui2(1 − li)/ui are the con-
sumption and leisure shares in total utility and εij1 and εij2 the elasticities of
marginal utilities (de�nition (15)).20

In our analysis, the key variables are the consumption share in total utility
si1 and the elasticity of intertemporal substitution in consumption (−1/εi11).
Simplifying notation as follows: εi ≡ εi11 and si ≡ si1, we get si2 = νi− si and:

εi12 = νi − 1− εi (80)

εi21 =
si

νi − si
(νi − 1− εi) (81)

εi22 = νi − 1− si

νi − si
(νi − 1− εi) (82)

The �rst inequality in (53) ensues from si1, si2 ∈ (0, νi). From (80), (81) and
(82), we compute other expressions of interest appearing in ξ̃

∗
, ξ̃

∗
+ κ and

ξ̃ ≡
∑n

i=1 λiξi/ (1− λ0), that is in equations (32), (33) and (72), respectively:

εi11 − εi21 = [εiνi + (1− νi) si] / (νi − si) = εi22 − εi12 (83)
εi11εi22 − εi12εi21 = − (1− νi) (εi11 − εi21) (84)

Normality conditions (16) and (17) immediately entail the second inequality in
(53). Substituting (80)-(84) into (32), (33) and (72), we eventually obtain (54),
(55) and (56).

Proof of Corollary 8. Saddle-path stability requires σ > σF . Then σF < 0
or, equivalently ξ̃ ≥ ξ̃

∗
+ κ, implies convergence. Replacing (54), (55) and (56)

20These properties are derived using the Euler's law (ui1ci + ui2 (1− li) = νui) and the
fact that the marginal utilities are homogeneous of degree νi − 1. Equation (79) is obtained
di�erentiating the Euler's law w.r.t. to ci and 1 − li and noticing that the cross derivatives
are equal.
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in ξ̃ ≥ ξ̃
∗

+ κ, we get

n∑
i=1

li (1− li)
(

1 +
νi − si

εiνi + (1− νi) si

)
≤ 1− l0

1− ν0

(
ρ + ε0

ν0 − s0

ε0ν0 + (1− ν0) s0

)
(85)

− ρ

1 + β

(
l − l0 −

ρ + (1− β) (1 + l − l0)
2 (1− ν0)

)
A su�cient condition for the left-hand side in inequality (85) to be nega-
tive is 1 + (νi − si) / [εiνi + (1− νi) si] < 0 for every i, that is (58) under
(53). A su�cient condition for the right-hand side to be positive is l − l0 −
[ρ + (1− β) (1 + l − l0)] / [2 (1− ν0)] < 0, that is (57) under (53).

Proof of Corollary 9. We notice that, under (53), as ν0 tends to 1−, the left-
hand side of inequality (85) in the Proof of Corollary 8 gets a �nite value, while
the right-hand side goes to +∞. Then inequality (85) asymptotically holds.
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