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Abstract

Free entry equilibria are usually determined by resorting to the zero
profit condition. We plead instead for a strict application of the Nash
equilibrium concept to a symmetric one-stage game played by actual and
potential producers, who have a decreasing average cost function without
sunk costs. Equilibrium then appears as typically indeterminate, with a
number of active firms varying between an upper bound imposed by prof-
itability and a lower bound required by sustainability. This indetermi-
nacy may have significant macroeconomic implications, since it opens the
way to coordination failures and to the emergence of endogenous fluctua-
tions generated by the coordination process. The paper presents a general
framework for the analysis of free entry equilibria, applies this framework
to the standard regimes of price and quantity competition used in macro-
economic modelling, and illustrates dynamic aggregate implications in a
simple macroeconomic model.
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1 Introduction
Free entry is commonly associated with zero profits. Under free entry and exit,
positive profits are supposed to stimulate creation of new firms and negative
profits to induce destruction of existent firms. A free entry equilibrium may
thus be seen as a stationary state, characterized by the zero profit condition, of
a dynamic process of net business formation. This view is implicit in the concept
of long run perfectly competitive equilibrium, and is naturally extensive to mo-
nopolistic competition, where the relevant scales of individual firms also appear
as negligible with respect to market size. As long as profits remain positive, any
entrant is then able to reproduce in an unreactive environment the operating
conditions and the proceeds of a high number of successful incumbents.
This line of argument ceases to hold, however, when a potential entrant has

to compete with a few incumbents only, all producing under internal economies
of scale. In this context, a simple replication of the incumbents’ performance
cannot guarantee identical success to the entrant, whose environment may be
seriously perturbed by that replication. Entry must now be examined as a
strategic decision, generally in a complex context, where timing and informa-
tion considerations are at stake. Faced with this difficulty, a common attitude
is to take the zero profit condition as an acceptable approximation, in particu-
lar in macroeconomic — or, more widely, general equilibrium — modelling, and
to leave more sophisticated approaches, resorting to sequential games with in-
complete information, to industrial organization theory. This was already the
position adopted in one of the first macroeconomic papers emphasizing the role
of increasing returns and imperfect competition, and treating the number of
producers as endogenous: “The story [behind the solution concept based on the
zero profit condition] can only be defended as an approximation. Entry and exit
are complicated phenomena, involving difficult game theoretic issues that defy
neat analytic formulation” (Weitzman, 1982, p.797). So, we seem to be trapped
in a dilemma: either to force a solution concept devised for non-strategic forms
of competition into the domain of oligopoly, or to resort to industrial organi-
zation tools that may prove too complex and also too specific for an accurate
macroeconomic or general equilibrium use. The point we want to make in this
paper is that we are by no means doomed to that dilemma. A straightforward
application of the concept of Nash equilibrium to static symmetric games re-
producing standard regimes of oligopolistic competition offers in fact a simple
way out.
We owe to Shubik (1959, 1984) the idea that entry can be modelled as a

simultaneous game between actual and potential entrants, depicted as “firms-
in-being”. At an equilibrium of such a game, along with active profit maximizing
firms, there may well be inactive firms that optimally decide not to produce, on
the basis of correct conjectures about the actions of the former. This asymme-
try might be the consequence of some advantage of incumbents over potential
entrants, creating a barrier to entry. But it can also prevail in a completely sym-
metric game where all players are a priori indistinguishable. Ex ante symmetry
is in fact required for an accurate representation of a perfectly contestable mar-
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ket, characterized by costless entry and exit and no disadvantage for potential
entrants relative to incumbents (Baumol, Panzar and Willig, 1982).
For a market to be perfectly contestable any observable profile of incum-

bents’ strategies must be sustainable, that is, no potential entrant may be able
to make a profit by becoming active. This requirement might suggest that, as
in the dynamic story of business formation, equilibrium profits are necessar-
ily close to zero as soon as entry is free, or the market perfectly contestable.
And this is indeed true if incumbents’ capacity to earn positive profits extends
to any potential entrant, always in a position to attract enough customers, ei-
ther by simply imitating incumbents’ behavior when firms are small relative to
the market, or by slightly undercutting incumbents’ prices when competition
takes place in the undifferentiated Bertrand oligopoly. An example of the for-
mer alternative is competition within the Chamberlinian “large group”, where
an individual price decision has no sensible repercussions on the industry price
level, as in Dixit and Stiglitz (1977). Another example is Cournot competition
in an undifferentiated industry, provided the optimal scale of each firm is small
with respect to market size, so that the Cournot equilibrium outcome approx-
imates the long run perfectly competitive outcome, characterized by efficiency
and zero profits, as in Novshek (1980). In a recent paper, Yano (2006) offers an
example of the latter alternative. He uses the same type of free entry equilib-
rium concept as Novshek — i.e. a Nash equilibrium of a single stage game played
in a perfectly contestable market — but, by assuming Bertrand-like competition
in an undifferentiated oligopoly,1 he obtains the long run perfectly competitive
outcome without assuming a small firm to market ratio. Also, he thus provides
a solid game theoretic foundation to the theory of contestable markets.
These examples suggest that sustainability is not independent of the regime

of competition. Instead of the “price sustainability” appearing in the origi-
nal definition of Baumol, Panzar and Willig (1982), which implicitly refers to
Bertrand competition, we may think of a “quantity sustainability” referring to
Cournot competition, with different implications (Brock and Scheinkman, 1983;
Brock, 1983). But preferably, rather than simply opposing price and quantity
sustainability, we may completely divorce the concept of sustainability from the
specific regime of competition to which it applies (d’Aspremont, Dos Santos Fer-
reira and Gérard-Varet, 2000). Indeed, along with Cournot competition, price
competition within a “small group” producing differentiated goods is another
situation where the zero profit condition is not implied by sustainability, and
where multiple free entry equilibria may exist in addition to the one at break-
even prices. In such equilibria, the strategies of active firms entail positive
profits and are nevertheless sustainable because potential entrants, taking those
strategies as given, realize that, whatever they do, demand will be insufficient for

1As a matter of fact, in the game designed by Yano (2006), firms choose simultaneously
a price and a set of quantities that are equivalent from the point of view of the profits they
generate. Together with free entry, this device allows him to extend Bertrand equilibrium to
the case where the average cost function is not constant, without incurring the inexistence
problem pointed out by Edgeworth. Yano (2005) extends this analysis to encompass strategic
technological choices.
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attaining the scale at which production becomes profitable. Also, under these
circumstances there is no sensible reason for the incumbents to accommodate
entry.
The objective of the present paper is to provide a unified conceptual and ana-

lytical framework for the study of free entry equilibria, covering different regimes
of oligopolistic competition and different specifications of internal increasing re-
turns. Our starting point is the same as in d’Aspremont, Dos Santos Ferreira
and Gérard-Varet (2000): we take as the relevant concept of free entry equilib-
rium the standard Nash solution of a simultaneous symmetric non-cooperative
game, such that active and inactive firms coexist. Sustainability is then just
the optimizing condition that applies to inactive firms, given their correct con-
jectures about the decisions of active firms. In this paper, we go however a
step further in the way of unification: we build a canonical model, where firms
strategies are always represented by prices, but which covers different regimes
of both price and quantity competition. One advantage of this comprehensive
representation is that free entry equilibria can then be generally characterized
by the interval between the break-even and the limit prices, to which the critical
price maximizing the incumbent profit should belong. This interval induces a
range of numbers of active firms which are compatible with a free entry equilib-
rium — a type of indeterminacy appearing as a robust property of oligopolistic
competition in contestable markets.
Our paper is organized as follows. We present our conceptual framework in

section 2, by (i) defining the concept of free entry equilibrium, (ii) introducing
the canonical model where strategies are represented by prices, and (iii) estab-
lishing equilibrium conditions on incumbents’ prices under general specifications
of cost and demand functions. These conditions are then applied in section 3 to
standard regimes of quantity and price competition in homogeneous and differ-
entiated markets, respectively, and the corresponding outcomes are compared.
Section 4 explores some potential macroeconomic implications raised by the
multiplicity of free entry equilibria. We conclude in section 5.

2 Oligopolistic competition with free entry
The analysis carried out in this section comprises three steps. In subsection 2.1,
we introduce a fairly general, although simple, game theoretic framework ap-
plying to perfectly contestable oligopolistic markets, and exploiting symmetry
of strategy profiles (in the spirit of Cooper and John, 1988). In this context, we
use in a standard way the equilibrium solution of a simultaneous and symmetric
game to define the concept of free entry equilibrium, under the additional re-
quirement that some firms optimally decide to remain inactive. Two conditions
characterize this equilibrium: profitability and sustainability. In subsection 2.2,
we propose a canonical model covering different regimes of competition in which
incumbents’ strategies are always represented by prices, even when quantities,
or locations in some characteristics space, are involved (as in Cournotian or
spatial competition, respectively). We further formulate general assumptions
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on the cost and demand functions. In subsection 2.3, we translate the two
conditions characterizing a free entry equilibrium into the requirement that the
common price chosen by the incumbents be a critical point of their profit func-
tion above the break-even price (for profitability) and below the limit price (for
sustainability). These bounds on incumbents’ prices translate in turn into a
non-degenerate admissible interval to which the number of active firms should
belong.

2.1 The concept of free entry equilibrium

Free entry means absence of any entry barrier accounting for some advantage of
incumbents over potential entrants. Under free entry all firms, whether estab-
lished or not, are supposed to benefit from full equality of opportunities. But
this does not imply that they are assured of equality of results. In game theoretic
terms, firms are assumed to play a symmetric game (equality of opportunities),
the equilibria of which need however not be symmetric (possible inequality of
results). Equilibria may in any case display a primary kind of asymmetry — the
one which concerns us here — involving the distinction between active and inac-
tive firms. A free entry equilibrium is just a Nash equilibrium of the symmetric
game, such that some firms are active and some inactive. In other words, there
is at least a potential entrant optimally deciding not to enter actually.
This free entry equilibrium is usually viewed as a sub-game perfect equilib-

rium of a two-stage game, with firms deciding at the first stage either to enter
or not, and then with entrants competing at the second stage according to some
specified regime (typically, quantity or price competition). The first stage entry
decision, possibly implying the same sunk cost for any entrant, does however not
give the right to an equal treatment at the second stage, as implicitly assumed.
Under internal increasing returns, there may be active and inactive entrants at
a second stage equilibrium. Consequently, we may as well resort to a simulta-
neous game, and take entry/exit decisions as implicit in quantity and/or price
decisions (Novshek, 1980; d’Aspremont et al., 2000; Corchón and Fradera, 2002;
Yano, 2005, 2006).
To be explicit, consider a symmetric simultaneous game played by N com-

peting oligopolistic firms, each one with the same strategy space S and the same
payoff function Π : SN → R. A firm is inactive if it chooses an element of the
subset S0 of strategies that lead to zero output, and it is active if it chooses a
strategy in the complementary subset. The nature of the subset S0 results from
the particular specification of the model, S0 being for instance equal to {0} in
quantity competition games, or to the set of prices higher than any customer’s
reservation price in price competition games. We admit that the payoff function
is constant with respect to any of its arguments over S0, if this set has more
than one element. Now consider strategy profiles s ∈ SN that are symmetric
within the class of n active firms (0 < n < N),2 all choosing sn ∈ SÂS0 while

2We admit that n > 0 in order to eliminate trivial equilibria, and that n < N to put aside
the case where entry is impossible for lack of further participants.
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N −n inactive firms indifferently choose some element of S0. It is clear that the
relevant information in s is completely contained in the pair (sn, n). Similarly,
as the vector s−i ∈ SN−1 of strategies of the N − 1 competitors of any firm i
has n − δ elements equal to sn (with δ = 1 if firm i is active and δ = 0 if it
is inactive) and N − 1− (n− δ) elements belonging to S0, it can be fully char-
acterized by the triplet (sn, n, δ). The profit Π (si, s−i) of any firm i, choosing
strategy si = s and facing a profile s−i of its competitors’ strategies with such
characterization, can then be denoted accordingly by Π (s, sn, n, δ).
If we apply the Nash equilibrium concept to this framework, for a pair (sn, n)

to characterize an equilibrium, the profit Π (s, sn, n, 1) of an active firm must
reach a maximum at s = sn, and the profit Π (s, sn, n, 0) of an inactive firm must
reach a maximum at any s0 ∈ S0. Furthermore, if we take free entry as compre-
hending free exit, so that sunk costs are excluded,3 inactivity always results in
zero profits, so that any equilibrium (sn, n) must verify Π (sn, sn, n, 1) ≥ 0 and
Π (s0, sn, n, 0) = 0.
In the usual approach,4 if n is the number of firms having chosen to enter

at the first stage, the two conditions for a free entry equilibrium (sn, n) without
sunk costs are: first, that Π (s, sn, n, 1) reach a maximum non-negative value on
SÂS0 at s = sn, and second, that whenever this value is positive there be no
equilibrium with n+1 entrants (symmetric with respect to all of them). The sec-
ond condition means that, for any strategy sn+1 ∈ SÂS0, if Π (s, sn+1, n+ 1, 1)
is maximized on SÂS0 at s = sn+1 then Π (sn+1, sn+1, n+ 1, 1) < 0. Putting
together these two conditions one obtains the zero profit condition commonly
seen as implied by free entry (Π (sn, sn, n, 1) = maxs∈SÂS0 Π (s, sn, n, 1) = 0),
provided one neglects the so-called “non-integer problem” (as n belongs to N∗,
not to R+, Π (sn+1, sn+1, n+ 1, 1) < 0 < Π (sn, sn, n, 1) is in fact the generic
case).
Instead, we use the standard definition of a Nash equilibrium of a single

stage game, just characterizing separately, as best responses, the decisions of
active and inactive firms:

Definition 1 A non-trivial symmetric free entry equilibrium is a pair (sn, n)
in (SÂS0)× {1, ..., N − 1} satisfying two conditions:

max
s∈S
Π (s, sn, n, 1) = Π (sn, sn, n, 1) ≥ 0 (profitability) and

max
s∈S
Π (s, sn, n, 0) = max

s∈S0
Π (s, sn, n, 0) = 0 (sustainability).

For a strategy profile characterized by the pair (sn, n) to be an equilibrium,
it must be profitable for any active firm to choose the strategy sn, meaning that
no higher profit is attainable either while staying active (Π (·, sn, n, 1) is maxi-
mized at sn) or through becoming inactive (Π (sn, sn, n, 1) is non-negative). The

3Exclusion of sunk costs is consistent with our assumption of a simultaneous game, but is
not crucial. In a two-stage game, if all (actual) entrants incur the same positive sunk cost k at
a first stage, the profit of an inactive entrant −k is negative, instead of 0, but this translation
does not fundamentally alter the argument.

4 See Götz (2005) for a recent example.
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strategy profile must also be sustainable with respect to inactive firms, mean-
ing that these firms should not be able to obtain a positive profit by becoming
active.

2.2 A canonical pricing model

In order to be more specific and yet to cover different regimes of competition
with a unified framework, we now introduce a simple model where strategies,
whatever their nature, can be represented by prices. Take an industry producing
either a homogeneous or a composite good sold at price P . Demand for this

good is given by a twice differentiable decreasing function D :
³
0, eP´→ (0,∞),

with eP ∈ (0,∞], continuously extended for P ≥ eP as D (P ) = 0. The good
is potentially produced by N firms, under internal increasing returns, with the
same twice differentiable increasing cost function C : (0,∞)→ (0,∞), extended
to C (0) = 0 (no sunk costs) and such that average cost C (y) /y is decreasing
on (0,∞). As in the preceding subsection, we restrict our analysis to equilibria
which are symmetric with respect to n active firms (0 < n < N), all choosing
the same strategy sn ∈ SÂS0. This strategy will always be represented by the
price pn at which any active firm intends to sell its output. Thus, any firm
deciding to supply quantity y at price p, and facing demand d (p, pn, n, δ), has
to solve a problem that can be stated as follows:

max
(p,y)∈R2+

{py − C (y) : y ≤ d (p, pn, n, δ)} . (1)

Clearly, a pair (p, y) such that 0 < y < d (p, pn, n, δ) cannot be a solution to
this problem, since the profit is increasing in y if C (y) /y ≤ p. Thus, the firm
will always decide either to produce y = d (p, pn, n, δ) or to stay inactive (i.e.
to choose y = 0), so that we may directly refer to the canonical program in the
single decision variable p

max
p∈R+

{pd (p, pn, n, δ)− C (d (p, pn, n, δ))} , (CP)

and then check that the maximum profit is non-negative — taking otherwise
y = 0 as the optimal decision.
One sees immediately that the canonical program (CP) covers the case where

firms produce differentiated goods and compete in prices. It is less evident yet
true that it also covers for instance the case of a homogeneous oligopoly with
Cournotian firms. Indeed, given symmetry with respect to n active firms, each
one of these firms chooses pn = P and yn = D (P ) /n, while N−n inactive firms
all choose y = 0. The residual demand at price p for any firm, whether active
(δ = 1) or inactive (δ = 0) is D (p) − (n− δ) yn = D (p) − (1− δ/n)D (pn) ≡
d (p, pn, n, δ). As y = d (p, pn, n, δ) if and only if D (p) = (n− δ) yn+y, program
(CP) is indeed equivalent to the standard program of the Cournotian firm,
namely maxy∈R+

©
D−1 ((n− δ) yn + y) y − C (y)

ª
.

The specific form of contingent demand to the firm d (·, pn, n, δ), of which
the Cournotian contingent demand is just an example, depends on the assumed
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regime of competition. However, we can establish a general relation between
the demand to the active firm d (pn, pn, n, 1) as a function of pn (the price set
by all the n active firms) and the demand to the industry:

nα (n) d (pn, pn, n, 1) = D (P ) , with P = pn/α (n) , (2)

where α (n) is a positive aggregating factor to be used when the product is a
composite good (α (n) ≡ 1, otherwise).5
We now introduce two general assumptions on the cost and demand func-

tions. The first expresses existence of internal increasing returns to scale (yet
not at an increasing rate). Formally:6

A1 The function C (y) /y is twice differentiable and has a negative, non-
decreasing elasticity (�yC (y)−1 < 0, �2yyC (y) ≥ 0) in the interval (0,∞).

The second assumption is introduced to ensure that the profit function is well-
behaved and has adequate boundary properties, namely that it takes negative
values when the scale of production is either too small or too large. It further
ensures that the demand to any firm, hence its average revenue, is larger for
the incumbent than for the potential entrant (as the former competes with only
n− 1 producing firms, while the latter faces one more competitor). Formally:

A2 For any triplet (pn, n, δ), the function d (·, pn, n, δ) is twice differentiable
in the interval (0, ep (pn, n, δ)) in which it is positive (where ep (pn, n, δ) ∈
(0,∞] is the supremum of customers’ reservation prices), and has in this in-
terval a negative, decreasing elasticity (�pd (·, pn, n, δ) < 0, �2ppd (·, pn, n, δ) >
0), such that

1

limp→0 �pd (p, pn, n, δ)
< lim

y→∞
�yC (y)− 1 and (3)

1

limp→p(pn,n,δ) �pd (p, pn, n, δ)
> lim

y→0
�yC (y)− 1. (4)

Furthermore, for any p, the function d (p, ·) is increasing in pn and δ, and
non-increasing in n, as long as its value remains positive.

Geometrically, as illustrated by Figure 1, assumption (A1) states that the
average cost curve C (y) /y is decreasing and convex when represented on a dia-
gram with logarithmic scales (see curve AC, with slope �yC (y)−1). Assumption

5Deflating the price pn by the aggregating factor in the definition of the price index P (the
price of the composite good) ensures that the aggregate expenditure PD (P ) in the industry
is indeed equal to the sum npnd (pn, pn, n, 1) of firms revenues. A well known example of
the use of such price and quantity indices for industries producing a composite commodity
is afforded by the Dixit and Stglitz (1977) framework (where α (n) = n1/(σ−1), with σ the
constant elasticity of substitution between elementary goods). For a more general analysis,
see d’Aspremont et al. (2007).

6We denote �xf (x, y) ≡ (∂f (x, y) /∂x)x/f (x, y) the partial elasticity of f at (x, y) with
respect to x. All related elasticity notations are self-explanatory.
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Figure 1: Average cost and revenue curves

(A2) states that the average revenue curve (given by the inverse of the function
d (·, pn, n, δ)) is decreasing, strictly concave, and always lower than the average
cost curve for an output either close to zero or close to infinity (see curves AR,
with slopes 1/�pd (p, pn, n, δ)).
In this diagram, the profitability condition requires that the average revenue
curve of an active firm AR (δ = 1) be higher than the average cost curve AC
for intermediate values of y, while the sustainability condition requires that the
average revenue curve of an inactive firm AR (δ = 0) be lower than the average
cost curve AC for all values of y. The two conditions are compatible because
average revenue is increasing in δ by assumption (A2).
As a last remark, it should be noticed that twice differentiability of the

function d (·, pn, n, δ) is more than a technical assumption. Indeed, it excludes
the case of Bertrand competition (price competition in a homogeneous oligopoly)
since d (·, pn, n, δ) has then a discontinuity at p = pn.

2.3 Equilibrium conditions

Under the assumptions of the preceding subsection, we can reformulate the
profitability and the sustainability conditions in terms of the price pn set (or
targeted) by all the n active firms. Profitability requires that this price be
an interior solution to the canonical program (CP) (hence a critical point of
the corresponding profit function Π (·, pn, n, 1)), and that this critical price be
at least equal to the break-even price, entailing zero profits. By contrast, sus-
tainability requires that the critical price be at most equal to the limit price
deterring entry. In the following, we are going to give formal definitions of these
three reference prices, and to examine sufficiency of the above conditions.

Definition 2 A critical price p∗n is a positive price that, when simultaneously
set by n active firms, satisfies the first order condition necessary for an interior
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solution of (CP), that is, solves the equation of marginal revenue with marginal
cost:

pn (1 + 1/�pd (pn, pn, n, 1)) = C0 (d (pn, pn, n, 1)) . (FOC)

If the critical price p∗n entails non-negative profits, this first order condition
is in fact sufficient, under our assumptions, for an interior solution of program
(CP) — in spite of the possible lack of quasi-concavity of Π (·, pn, n, 1), due to
the non-convexity of the cost function. Profitability is then satisfied at p∗n, as
stated in the following lemma:

Lemma 1 (Profitability I) Under assumptions (A1) and (A2), the symmet-
ric strategy profile represented by the pair (p∗n, n) ∈ R++×{1, ..., N − 1} satisfies
the profitability condition if and only if p∗n is a critical price entailing non-
negative profits or, equivalently, leading to a revenue-cost ratio at least equal to
one:

g (p∗n, n) ≡
p∗nd (p

∗
n, p
∗
n, n, 1)

C (d (p∗n, p
∗
n, n, 1))

≥ 1. (PNNC)

Proof. See Appendix.
Now, notice that for an increasing function g (·, n), condition (PNNC) can

equivalently be expressed by requiring that the critical price be at least equal
to the break-even price p (n), which entails zero profits, or equivalently leads
to a unit value of the revenue-cost ratio. We formalize and develop this idea
in the following. To begin with, we give a general definition of the break-even
price, independently of g (·, n) being an increasing function. To understand this
definition, recall that eP is the price, possibly infinite, at which demand becomes
nil, and that the price P of the composite good is equal to pn deflated by the
aggregating factor α (n).

Definition 3 The break-even price p (n) is the lowest price pn which, when
set by all the n active firms, allows them to get non-negative profits: p (n) ≡
inf P (n), with

P (n) ≡
n
pn ∈

³
0, α (n) eP´ : g (pn, n) ≥ 1o (5)

(by convention, p (n) =∞ if P (n) = ∅).

As just observed, the profitability requirement can be equivalently expressed
by the inequality p∗n ≥ p (n) (where p∗n is a critical price), provided g (·, n) is an
increasing function, a property that is verified when the demand to the industry
has an elasticity that is always at least equal to −1. Otherwise, the market
revenue PD (P ) may decrease with P , imposing an upper bound on the set
P (n), so that the preceding inequality is only a necessary — but in general not
sufficient — condition for profitability. However, under the following additional
assumption, implying in particular quasi-concavity of the function g (·, n), that
inequality remains in fact a sufficient condition for profitability, as stated in
Lemma 2.

10



A3 Demand to the industry has an elasticity �PD (·) which is non-increasing
whenever smaller than −1. The elasticity �yC

0 (y) of marginal cost is
larger, for any y, than the least upper bound 1/ limP→P �PD (P ) of the
elasticity of inverse demand.

Lemma 2 (Profitability II) Under assumptions (A1), (A2) and (A3), the
symmetric strategy profile represented by the pair (p∗n, n) ∈ R++×{1, ...,N − 1}
satisfies the profitability condition if and only if p∗n is a critical price at least
equal to the break-even price: p∗n ≥ p (n).

Proof. See Appendix.
Finally, we introduce the concept of limit price, to be taken as un upper

bound imposed on the critical price so as to ensure sustainability. This price was
defined as “the highest common price which the established seller(s) believe they
can charge without inducing at least one increment to entry” (Bain, 1949, p.454).
This is the price leading to an average revenue curve of the potential entrant
which is just below the average cost curve (Modigliani, 1958), as represented by
the dotted curve tangent to curve AC in Figure 1. Formally:

Definition 4 The limit price p (n) is the highest price pn which, when set by
all the n active firms, prevents an inactive firm from getting positive profits:
p (n) ≡ supP (n), with

P (n) ≡
½
pn ∈

³
0, α (n) eP´ : max

p∈(0,p(pn,n,0))
G (p, pn, n) ≤ 1

¾
, (6)

with G (p, pn, n) ≡ pd(p,pn,n,0)
C(d(p,pn,n,0))

and ep (pn, n, 0) as defined in assumption (A2).
Observe that the elasticity with respect to p of the revenue-cost ratio G is

�pG (p, pn, n) = 1 + (1− �yC (d (p, pn, n, 0))) �pd (p, pn, n, 0) . (7)

Hence, by inequalities (3) and (4) in assumption (A2), this elasticity is positive
for p close to zero and negative for p close to ep (pn, n, 0), implying thatG (·, pn, n)
has indeed an interior maximum. Thus, we can determine the limit price p (n)
as the solution in pn to equations:

pd (p, pn, n, 0) = C (d (p, pn, n, 0)) (8)

−�pd (p, pn, n, 0) =
1

1− �yC (d (p, pn, n, 0))
, (9)

namely the zero profit condition and the first order condition for maximization
of G (·, pn, n), respectively.
Given Definition 4, we can now reformulate the sustainability condition by

reference to the limit price p (n).

Lemma 3 (Sustainability) Under assumptions (A1) and (A2), the condition
pn ≤ p (n) is necessary and sufficient for the pair (pn, n) ∈ R++×{1, ...,N − 1}
to satisfy the sustainability condition.
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Proof. See Appendix.
We summarize in the following proposition the results stated in the two last

lemmata.

Proposition 1 Under assumptions (A1), (A2) and (A3), a symmetric profile
represented by the pair (p∗n, n) ∈ R++×{1, ..., N − 1} is a free entry equilibrium
if and only if p∗n is a critical price between the break-even price and the limit
price: p (n) ≤ p∗n ≤ p (n).

Figure 2 provides a representation of this equilibrium condition in the space
(n, pn).7 The critical, break-even and limit prices appear as functions p∗ (·),
p (·) and p (·) of a real (instead of an integer) number n. Observe how the
condition p (n) ≤ p∗n ≤ p (n), resulting in the thick segment of the critical price
curve, translates into a restriction on the number n of active firms. This number
should belong to the interval [n, n] with endpoints defined by p∗ (n) = p (n) and
p∗ (n) = p (n).
Obviously, as soon as the interval [n, n] contains more than one integer, the

profitability and sustainability conditions are compatible with existence of free
entry equilibria with positive profits, along with the one determined by the zero
profit condition (corresponding to a number of active firms equal to the highest
integer in the interval — which happens to be exactly n in the particular exam-
ple of Figure 2). It is worthwhile to emphasize that this source of equilibrium

7The case represented in Figure 2 corresponds to price competition in a differentiated
oligopoly with a CES aggregator (Dixit-Stiglitz), where we have assumed a unit-elastic de-
mand to the industry, with constant expenditure normalized to unity, a constant elasticity
of substitution within the industry equal to 6, and a constant elasticity of the marginal cost
function equal to −0.2.
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multiplicity differs from the one usually considered in the coordination failures
literature and popularized by the seminal paper of Cooper and John (1988).
In this literature, multiple symmetric equilibria are associated with the same
exogenous number n = N of players (thus resulting, in our framework, in a
multi-valued function p∗ (·)). Such multiplicity relies on strategic complemen-
tarity, which amounts to require that the best response of p be an increasing
function of pn. No such condition is necessary in our approach, because sym-
metry is now imposed only within each class of active and inactive firms. This
explains why, as we are going to show, equilibrium multiplicity may prevail
even under strategic substitutability, as it is typically the case under Cournot
competition.

3 Regimes of competition
In order to illustrate the potential of our analytical framework, we now apply
it to two standard regimes of quantity and price competition. As for quantity
competition, we limit our analysis to the Cournot homogeneous oligopoly. As for
price competition, we must however refer to a market for differentiated products,
since the Bertrand homogeneous oligopoly is outside our scope and leads, at free
entry equilibrium, to the competitive outcome (Yano, 2005, 2006). We might for
instance use the well known Dixit and Stiglitz (1977) model, modified so as to
account for manipulability of the industry price index by each one of a “small
group” of active firms (d’Aspremont, Dos Santos Ferreira and Gérard-Varet,
1996). However, since this model has already been treated in this perspective
by d’Aspremont, Dos Santos Ferreira and Gérard-Varet (2000), we shall devote
our analysis of price competition to the Salop (1979) spatial model, where the
strategy variables include, besides prices, locations in the characteristics space.

3.1 Quantity competition with product homogeneity: the
Cournot model

There are two sources of decreasing average cost, namely the presence of a fixed
cost and the existence of internal economies of scale accounting for decreasing
marginal cost. These two sources are not equivalent, as attested by their specific
effects in the Dixit-Stiglitz model, where multiple free entry equilibria generally
exist when marginal cost is an isoelastic decreasing function, but never when it
is constant, in the presence of a fixed cost (d’Aspremont et al., 2000).8 However,
in the two regimes of competition we are going to analyze, the weaker source of
decreasing average cost is sufficient to ensure multiplicity of free entry equilibria,
and hence to illustrate the use of our framework. We shall accordingly assume
for simplicity a positive fixed (non sunk) cost φ and a constant positive marginal
cost, normalized to one: C (y) = φ+ y if y > 0 and C (0) = 0, a function that
clearly satisfies assumption (A1). On the demand side we assume, also in the

8 In the latter case, the admissible interval [n, n] is still non-degenerate, but it contains at
most one integer, the one determined by the zero profit condition.
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analysis of both regimes, a unit-elastic demand to the industry9 D (P ) = b/P ,
with b > 0, satisfying (A3). One advantage of this specification is that the
break-even price becomes independent of the particular regime of competition
we are considering, since expenditure b in the industry is not affected by price
changes. The break-even price is then given by

p (n) =
1

1− nφ/b
, (10)

an increasing function of the number n of active firms and of the share φ/b of
individual fixed cost in aggregate expenditure.
With this specification of the demand to the industry and according to what

has already been shown in subsection 2.2, the Cournotian contingent demand
can be expressed in a symmetric configuration as

d (p, pn, n, δ) = b

µ
1

p
− 1− δ/n

pn

¶
, (11)

where p is the market price aimed at by the firm and pn = b/nyn the price
representing the strategy yn expected from each one of its n− δ active competi-
tors (with δ = 1 if the firm is itself active, δ = 0 otherwise). This function has
a partial elasticity with respect to p (for p in the interval (0, pn/ (1− δ/n)) in
which individual demand is positive and finite) given by

�pd (p, pn, n, δ) = −
1

1− (1− δ/n) (p/pn)
. (12)

It is easy to check that it satisfies assumption (A2), and that �pd (pn, pn, n, 1) =
−n.
>From (11), we see that the contingent demand to the inactive firm is inde-

pendent of the number n of active firms, so that the limit price is itself constant
in n:10

p (n) =
1³

1−
p
φ/b

´2 , (13)

again an increasing function of the share φ/b of individual fixed cost in aggregate
expenditure. As to the critical price, it is simply equal to the markup factor
µ (n) = n/ (n− 1) on marginal cost (multiplied by 1, the normalized marginal
cost):

p∗ (n) =
n

n− 1 . (14)

Profit non-negativity (p∗ (n) ≥ p (n)) requires, by (10),

n ≤
p
b/φ ≡ n, (15)

9Equilibrium with a single active firm will consequently be excluded.
10Using (11) with δ = 0, we get from (8) py = b (1− p/pn) = φ + y, so that pn =

[b/ (b− (φ+ y))] [(φ+ y) /y]. From (9), we get p/pn = y/ (φ+ y). Hence, φ + y =
√
φb,

and finally pn = 1/ 1− φ/b
2
.
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Figure 3: Equilibrium conditions in the Cournot model

an upper bound that must be at least equal to 2, in order for a free entry
equilibrium to exist, so that φ/b ≤ 1/4 is a necessary condition for existence.
Sustainability (p∗ (n) ≤ p (n)) in turn requires:

n ≥ n

2− 1/n ≡ n. (16)

Notice that the admissible interval [n, n] contains more than one integer for
n ≥ 3, that is, for a small enough degree of economies of scale, as determined
by the share φ/b of individual fixed cost in aggregate expenditure, which should
not exceed 1/9. Besides, the degree of indeterminacy increases with n, that
is, it is larger the smaller the degree of economies of scale. However, a low
degree of economies of scale results in a relatively large number of active firms,
reducing the impact of variations in n on the markup factor (and hence on the
equilibrium price). Figure 3 gives an illustration (for φ/b = 0.04 and similarly
to Figure 2) of the conditions we impose on the critical, break-even and limit
prices in order to ensure profitability and sustainability.

3.2 Price competition with strategic product differentia-
tion: the Salop model

In the industrial organization literature, spatial competition is a popular alter-
native to non-address models relying on CES or quadratic consumers’ utility
functions. Although less frequent in macroeconomic modelling, it has for in-
stance already been used by Weitzman (1982), who introduced a macroeconomic
version of Salop’s (1979) model of the circular city. The space of characteristics
of the industry good is represented by a circle with perimeter equal to 1, on
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which consumers’ locations are uniformly distributed with unit density. A con-
sumer devoting a positive budget b to the purchase of that good and located at
point x between two firms j and j + 1, which are themselves located at aj and
aj+1 respectively, will buy from firm j if pj + τ (x− aj) < pj+1 + τ (aj+1 − x),
where pj and pj+1 are the prices set by the two firms and τ is the subjective
transportation rate in money equivalent units. The marginal consumer who
is indifferent between the two suppliers is the one located at point x(j,j+1) =
(aj + aj+1) /2 + (pj+1 − pj) /2τ , so that the market area of firm j is

x(j,j+1) − x(j−1,j) =
aj+1 − aj−1

2
+
(pj−1 + pj+1) /2− pj

τ
, (17)

which is independent upon its own location aj . However, although indifferent
about its precise location within its market area, firm j is assumed to set its
price pj on the basis of its conjectures not only about prices pj−1 and pj+1 but
also about the locations aj−1 and aj+1 simultaneously chosen by its neighbors.
This implies in particular that, when inactive at the strategy profile taken as
reference, a deviating firm does not conjecture that the locations of the two
competitors between which it decides to locate are going to be benevolently
accommodated in response to its decision to deviate into activity. As a con-
sequence, any deviating firm is able to manipulate its market area through its
pricing decision, within the segment separating its two neighbors, but the length
of this segment is 2/n if the firm is active and only 1/n if it is inactive (assuming
that locations are symmetric with respect to the n active firms).
On the basis of symmetry with respect to both locations and prices, we

obtain from equation (17) the following expression for contingent demand to
the representative firm (with δ = 1 if it is active, δ = 0 otherwise):

d (p, pn, n, δ) = (b/τp) ((1 + δ) τ/2n+ pn − p) , with p ∈ (0, (1 + δ) τ/2n+ pn] .
(18)

The partial elasticity of d (p, pn, n, δ) with respect to p is:

�pd (p, pn, n, δ) = −
(1 + δ) τ/2n+ pn

(1 + δ) τ/2n+ pn − p
. (19)

All the conditions of assumption (A2) are again satisfied.
Since �pd (pn, pn, n, 1) = − (1 + npn/τ), the markup factor on the marginal

cost is µ = 1+ τ/npn, so that we obtain the following expression for the critical
price as a (decreasing) function of n:

p∗ (n) = µ∗ =
1

2
+

r
1

4
+

τ

n
. (20)

Profit non-negativity (p∗ (n) ≥ p (n)) imposes, by this equation and equation
(10), an upper bound on the number n of active firms:

n ≤ τp
τφ/b

³
1 +

p
τφ/b

´ ≡ n, (21)
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which must be at least equal to 2 for existence of a free entry equilibrium, so
that the ratio φ/b cannot be too large. The upper bound n on the number of
active firms is increasing in the transportation rate τ (representing the degree
of product differentiation) and decreasing in the share φ/b of individual fixed
cost in aggregate expenditure (determining the degree of internal economies of
scale). Finally, equations (8) and (9) lead to the limit price11

p (n) =
³
1 +

p
τφ/b

´2
− τ/2n, (22)

and, after a straightforward computation, to the lower bound imposed by sus-
tainability (p∗ (n) ≤ p (n)):

n ≥ τÃr
2
³
1 +

p
τφ/b

´2
+ 1/4− 1

!2
− 1/4

≡ n. (23)

It can easily be checked that the ratio n/n between the endpoints of the
admissible interval [n, n] is a decreasing function of the variable

p
τφ/b, which

tends to 3/4 as this variable tends to zero. As a consequence, the admissible
interval contains at least two integers if n ≥ 4, which requires a small enough
share of individual fixed cost in aggregate expenditure (φ/b < 1/4) and a high
enough degree of product differentiation as measured by τ . We represent in
Figure 4 (for the same value 0.04 of the ratio φ/b and for τ = 25/16, so as to
get the same n = 5 and the same p∗ (n) = µ (n) = 1.25 as in Figure 3)12 the
free entry equilibrium conditions in terms of the critical, break-even and limit
prices.
We may now formulate a tentative conclusion of the analysis performed in

this section. The degree of internal economies of scale (here determined by the
share φ/b of the individual fixed cost in the aggregate expenditure) must be
low enough to ensure existence, and even more so multiplicity, of free entry
equilibria. However, as the share φ/b becomes smaller, the amplitude of price
variations across equilibria becomes smaller too. Under price competition, ex-
istence and especially multiplicity also require a high enough degree of product
differentiation (here represented by the rate of transportation τ) and a corre-
spondingly high degree of market power. Sustainability (as indicated by the
level of the lower boundn on the admissible number of active firms, given the
same upper bound n) is harder to ensure under price competition than under
quantity competition, where potential entrants expect incumbents to stick to
specific output levels. But price sustainability remains compatible with posi-
tive profits under strategic product differentiation, where potential entrants at
11Using (18) with δ = 0, we obtain from (8) py = (b/τ) (τ/2n+ pn − p) = φ + y. Also,

using (19) with δ = 0, we get from (9): p/ (pn − p+ τ/2n) = y/φ. These equations together

entail: y = bφ/τ and p = 1 + τφ/b, and then pn = 1 + τφ/b
2
− τ/2n.

12 Imposing either the same upper bound n or the same corresponding markup factor µ (n) =

p∗ (n) in the two models leads to the relation:
√
τ = 1/ 1− φ/b . The choice of the

numerical value φ/b = 0.04 then implies τ = 25/16.
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Figure 4: Equilibrium conditions in the Salop model

least expect incumbents to stick to specific locations in the characteristics space.
In the non-address model of Dixit and Stiglitz, where potential entrants have
no disadvantage relative to incumbents as regards the capacity to benefit from
product differentiation, the presence of a fixed cost is however not enough to
ensure sustainability along with positive profits.

4 Dynamic aggregate implications
Equilibrium indeterminacy calls for some selection procedure, allowing coor-
dination of firms conjectures and resulting decisions. In this perspective, the
usual zero profit condition appears as a particular selection rule, picking up the
equilibrium associated with the greatest integer in the admissible interval [n, n].
But, as long as other profitable strategy profiles are sustainable, there is no rea-
son to suppose that firms always coordinate on the least profitable of them. This
section explores the potential aggregate implications of this coordination prob-
lem, using a very simple macroeconomic model with overlapping generations of
identical consumers and a large number of differentiated industries.

4.1 Consumers

The economy is composed by overlapping generations of “young” and “old”
consumers. A generation of identical consumers of unit mass is born at each
date t and lives for two periods. Consumers work only when young, receiving
in this period wage earnings and dividends from firms (which are equally held
by young consumers), and can only save in the form of money, which brings no
interest. They consume only when old, using past money savings. In addition,
we assume that the preferences of old consumers are defined over varieties i =
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1, ...,m of goods produced by the m industries, with a constant elasticity of
substitution that we take equal to unity. This implies that consumption may

be represented by the aggregate Y = m
³Qm

i=1 Y
1/m
i

´
, which can be bought at

the corresponding price index P =
Qm

i=1 P
1/m
i .

Assuming identical homothetic preferences, we can simply refer to the choices
of an aggregate representative young consumer, born at t and wishing to maxi-
mize EtU(Y t+1)− V (Lt) subject to the constraints P t+1Y t+1 ≤Mt and Mt ≤
wtLt + Dt, where Mt is money demand, Lt is labor, supplied at the nominal
wage wt, and Dt is the total amount of dividends received from firms. The
first-order conditions for this program may be written as

Et

µ
U 0(Y t+1)

wt

P t+1

¶
= V 0 (Lt) , (24)

with the two former constraints binding at the optimum. For simplicity, we
shall from now on restrict our attention to the case of a utility function which is
isoelastic in consumption and linear in labor, i.e. U (Y ) = Y ρ/ρ and V (L) = vL,
with ρ ∈ (0, 1) and v ∈ (0,∞). With these assumptions, it is easy to see from
the optimality conditions that the young consumer will save in the form of
money all its income available at t, supplying any positive amount of labor
provided that the nominal wage is at least equal to the nominal reservation

wage wt = v/Et

³
Y
ρ−1
t+1P

−1
t+1

´
.

4.2 The production sector

We adopt the usual macroeconomic modelling of monopolistic competition (Blan-
chard and Kiyotaki, 1987) by assuming that the economy is composed of a large
number m of industries producing differentiated goods. However, we depart
from this modelling by relaxing the assumption that all sectors are represented
by a single firm acting in a monopolistic position. Instead, as seen in the preced-
ing section, we consider that in each industry a number N of potential producers
compete in an oligopolistic setting, deciding in particular to be active or not ac-
cording to their (correct) conjectures of other producers’ behavior. Each firm
wishes to maximize profits py−wl using the same production function13 y = l1/γ ,
with 0 < γ < 1, and decides to set its price and to choose its activity level ac-
cording to these conjectures and to the sectoral demand D (Pi) =

¡
PY /m

¢
/Pi

(see program (CP) above). At a symmetric free-entry equilibrium with ni active
firms in industry i, each one of these firms chooses the same critical price, equal
(or proportional, in the case of an industry producing a composite good) to

Pi =
¡
PY /m

¢1−1/γ
w1/γ [Ψi(ni)]

1/γ , where Ψi is a decreasing function with a
specification depending on the regime of competition prevailing in the industry.
For simplicity, we assume symmetry across sectors as concerns the competi-
tion regime, so that Ψi = Ψ for all i. Also, under appropriate conditions on

13We might have chosen the specification y = l− φ instead, by assuming either Cournot or
spatial competition (the CES product differentiation being excluded in this case).
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γ, there will typically exist a non-degenerate interval [n, n] of admissible num-
bers of active firms at equilibrium, producing a total sectoral amount of good

D (Pi) =
¡
PY /m

¢1/γ
w−1/γ [Ψ(ni)]

−1/γ .

4.3 Equilibrium

It is easy to derive from the previous subsections the general equilibrium of this
economy. Assuming a constant stock of money, Mt = M for t = 0, ...,∞, the
total aggregate consumption demand is equal to the real purchasing power of
money holdings of old consumers, M/P t. Total production, as represented by
the index Y t, satisfies:

Y t = m

µ
P tY t

mwt

¶1/γ Ã mY
i=1

Ψ(ni,t)
1/m

!−1/γ
. (25)

Equilibrium in the output market then requires Y t =M/P t. Labor market
equilibrium implies that the nominal wage equalizes the nominal reservation
wage:

wt = v/Et

³
Y
ρ−1
t+1P

−1
t+1

´
. (26)

Finally, the money market clears by Walras law. Combining these two equations
and using Yt =M/P t (and Y t+1 =M/P t+1), it is straightforward to show that
the general equilibrium of this economy may be represented by the following
(non-autonomous) one-dimensional dynamic system:

Y t = m1−1/γv−1/γ

Ã
mY
i=1

Ψ(ni,t)
1/m

!−1/γ ³
Et

³
Y
ρ

t+1

´´1/γ
. (DS)

Clearly, if the coordination process selects a time-invariant number of active
firms ni in each sector, the system (DS) has a deterministic stationary equilib-

rium Y
∗
=
¡
m1−γvΨ

¢1/(ρ−γ)
, with Ψ =

¡Qm
i=1Ψ(ni)

1/m
¢
, for each admissible

m-uple (ni). Obviously, any such equilibrium is indeterminate in the dynamic
sense as long as ρ ≥ γ. This indeterminacy condition, imposing a degree of
increasing returns to scale high enough compared to the degree of concavity of
the utility function, is typical in this kind of model. Although in this very sim-
ple setup without capital accumulation and with labor as the unique input in
production, indeterminacy may well occur for empirically reasonable degrees of
increasing returns and risk aversion, richer dynamic models in line with the Real
Business Cycle literature are often found to be indeterminate only for relatively
high increasing returns, an assumption which is widely discussed and criticized
in the empirical literature (see the survey by Benhabib and Farmer, 1999, for
further discussion on this issue).
Since we want to focus on an alternative source of indeterminacy, we will

assume in the following that the non-trivial steady state Y
∗
is determinate in the

dynamic sense, that is, that ρ < γ. Given this condition, it is clear that, if the
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coordination problem within each industry were implicitly solved by referring
to the zero profit condition (i.e., by making ni equal to the greatest integer
value bnc in the interval [n, n], for each i = 1, ...,m), the unique non-explosive
trajectory would require that output jump instantaneously and permanently to
its long-run stationary value Y

∗
=
¡
m1−γvΨ (bnc)

¢
1/(ρ−γ). No deterministic or

stochastic fluctuations remaining in a compact neighborhood of the steady-state
would then be possible. However, as long as the coordination problem is not
given such a simple solution (implying that incumbents, despite their interests,
are always ready to accommodate entry), neither endogenous fluctuations nor
multiplicity of Pareto-ranked deterministic steady states can be excluded.

4.4 Fluctuations driven by sunspots

Let us now illustrate how the fundamental static indeterminacy inherent in free
entry equilibria may be the source of important sunspot-driven fluctuations,
even when the steady-state is determinate in the dynamic sense (when ρ < γ).
Multiplicity of equilibria requires that firms within each industry find a coordi-
nation scheme allowing them to rationalize one equilibrium among the potential
ones — a point that has been left implicit when discussing the possibility of coor-
dination failures. We shall therefore consider that firms tackle this coordination
problem by referring to some idiosyncratic signal indicating the situation that
is about to be realized at some date in this particular sector.
To be explicit, assume that the admissible interval [n, n] contains K ∈

{2, ...,N − 2} integers nk ≡ dne+k−1 (where dne is the smallest integer larger
than or equal to n), with k = 1, ...,K. A signal for industry i at date t may then
be seen as a realization ki,t of a random variable with arbitrary distribution over
the discrete support {1, ...,K}, ensuring coordination within this sector on the
number nki,t of active firms. Also, we can define a state of the economy as a
whole at time t as a vector Ft = (ft1, ..., ftK) of proportions of industries that
have received the signal k (k = 1, ...,K) at this period. Looking for stationary
stochastic equilibria of our economy, we assume that there is an arbitrary num-
ber R ∈ NÂ {0, 1} of such states, indexed by r = 1, ..., R and such that with
each r we associate the vector of proportions Fr. Besides, we assume that the
transition between states across periods is described by a (R×R) row-stochastic
transition matrix T with elements Tij satisfying Tij ≡ Pr(r0 = j | r = i), where
a prime stands for next period.
It is now straightforward to derive from equation (DS) the level of output Y r

associated with any state r ∈ {1, ..., R} of the economy in a stationary stochastic
equilibrium (with Y 1 ≤ ... ≤ Y R, by convention):

Y r = m

Ã
1

mv

PR
r0=1 Trr0Y

ρ
r0QK

k=1Ψ(nk)
frk

!1/γ
≡ ηr

¡
Y 1, ..., Y R

¢
. (SSE)

Since Y
ρ

1 ≤
PR

r0=1 Trr0Y
ρ

r0 ≤ Y
ρ

R and Ψ(nK) ≤
QK

k=1Ψ(nk)
frk ≤ Ψ(n1), we
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have:

m

Ã
1

mv

Y
ρ

1

Ψ(n1)

!1/γ
≤ Y 1 ≤ Y R ≤ m

Ã
1

mv

Y
ρ

R

Ψ(nK)

!1/γ
, (27)

and hence, for ρ < γ,

Y ≡
¡
m1−γvΨ(n1)

¢−1/(γ−ρ) ≤ Y 1 ≤ Y R ≤
¡
m1−γvΨ(nK)

¢−1/(γ−ρ) ≡ Y . (28)

Thus, η as defined in (SSE) is a continuous mapping of the set
h
Y , Y

iR
into

itself. By Brouwer’s fixpoint theorem, there exists a solution
³
Y
∗
1, ..., Y

∗
R

´
=

η
³
Y
∗
1, ..., Y

∗
R

´
to system (SSE).

Obviously, for a non-degenerate transition matrixT, aggregate real output Y
will fluctuate stochastically among its R potential (generically different) values.
It can also be checked that, with degenerate transition matrices (in particular,
when all the rows of T belong to the canonical basis of RR), real output will
necessarily tend to a deterministic cycle of order q ≤ R (possibly after a transi-
tion period of finite time). Without intrinsic uncertainty, in an economy where
the zero profit condition would imply an instantaneous and permanent coordi-
nation on a single deterministic steady-state, we see that simple coordination
procedures called for by the multiplicity of free entry equilibria may well be the
source of periodic or aperiodic, deterministic or stochastic cycles (Dos Santos
Ferreira and Dufourt, 2006, exploit this possibility within a fully specified and
calibrated model of the business cycle).

5 Conclusion
We have argued in this paper that, in spite of an almost universal convention,
zero profits should not be imposed as an equilibrium condition under free entry,
beyond the realm of non-strategic forms of competition. A straightforward ap-
plication of the Nash equilibrium concept to standard simultaneous symmetric
games, portraying diverse regimes of oligopolistic competition, typically entails
multiple free entry equilibria with various adjacent numbers of active firms and
different levels of positive profits. These equilibria are characterized by two con-
ditions: profitability (the price should be no smaller than the break-even price)
and sustainability (the price should be no larger than the limit price). These
conditions define a non-degenerate interval of admissible numbers of active firms,
that typically contains more than one integer. The zero profit condition then
appears as no more than a particular selection criterion, picking up the least
profitable equilibrium, associated with the highest integer in this interval. Our
analytical framework and the indeterminacy results that it allows to establish
are quite robust, and apply to both quantity and price competition, although the
latter regime, in particular under non-strategic forms of product differentiation,
makes sustainability harder to attain when profits are positive.
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Beyond industrial organization, the indeterminacy of free entry equilibrium
has potentially significant macroeconomic implications. In particular, it raises
a coordination problem and consequently favors the emergence, even under dy-
namic determinacy, of sunspot fluctuations induced by some extrinsic, poten-
tially varying, public signal on which firms in each industry need to coordinate
(Dos Santos Ferreira and Dufourt, 2006, and Dos Santos Ferreira and Lloyd-
Braga, 2003). Also, taking into account this particular type of indeterminacy
enlarges the scope for coordination failures, which cease in particular to depend
upon strategic complementarity.

Appendix

Proof of Lemma 1 (Profitability I):
Take a pair (p∗n, n) ∈ R++×{1, ...,N − 1}. Equation (FOC) in Definition 2,

namely the equality of marginal revenue and marginal cost, is the necessary first
order condition for an interior solution of (CP). Hence, the condition that p∗n be
a critical price entailing non-negative profits is clearly necessary for profitability.
Let us examine if it is sufficient. A sufficient second order condition for a local
maximum is that the marginal revenue decrease faster with y (increase faster
with p) than the marginal cost, that is, that the elasticity with respect to p of
the left-hand side of (FOC) be larger than the corresponding elasticity of the
right-hand side:

1−
�2ppd (p

∗
n, p
∗
n, n, 1)

1 + �pd (p∗n, p
∗
n, n, 1)

> �yC
0 (d (p∗n, p

∗
n, n, 1)) �pd (p

∗
n, p
∗
n, n, 1) . (SOC)

By assumption (A2) and given (FOC) (implying 1 + �pd (p
∗
n, p
∗
n, n, 1) < 0),

the left-hand side of inequality (SOC) is larger than one, so that the inequal-
ity is satisfied if the right-hand side is not larger than one. This is always
the case if marginal cost is non-decreasing. Otherwise, if �yC0 (y∗) < 0 (with
y∗ = d (p∗n, p

∗
n, n, 1)), the profit non-negativity condition (PNNC), by (FOC)

and assumption (A1), can be expressed for a critical price as

�pd (p
∗
n, p
∗
n, n, 1) ≥

1

�yC (d (p∗n, p
∗
n, n, 1))− 1

. (PNNC*)

This inequality implies that the right-hand side of (SOC) is indeed at most equal
to

�yC
0 (y∗)

�yC (y∗)− 1
= 1 +

�2yyC (y
∗)

�yC (y∗)− 1
≤ 1,

by assumption (A1), thus verifying condition (SOC). Hence, the profit function
has a local interior non-negative maximum at any critical price p∗n satisfying
(PNNC). This maximum is in fact a global maximum. Indeed, by differntia-
bility of the profit function, if there were two maxima, they would be sepa-
rated by a minimum satisfying (FOC) and violating (SOC), hence (PNNC) (and
(PNNC*)). But, if profit has a negative minimum at some price, then it cannot
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have a positive maximum at a higher price, since �pd (·, p∗n, n, 1) (in the LHS of
(PNNC*)) is decreasing and �yC (d (·, p∗n, n, 1)) (in the RHS) is non-increasing,
so that (PNNC*) cannot be satisfied at this higher price.¥

Proof of Lemma 2 (Profitability II):
Using equation (2) relating demand to the active firm and demand to the

industry, we can compute the elasticity with respect to pn of the revenue-cost
ratio g (pn, n) defined in Lemma 1:

�png (pn, n) = 1 + (1− �yC (D (pn/α (n)) /nα (n))) �PD (pn/α (n)) . (29)

There are two cases. If �PD (P ) ∈ [−1, 0) for any P ∈
³
0, eP´, this elasticity

is positive by assumption (A1). The function g (·, n) is then increasing, so that
the condition g (pn, n) ≥ 1 in Lemma 1 can be immediately replaced by the
condition pn ≥ p (n), with g

¡
p (n) , n

¢
= 1. If �PD (P ) < −1 for some P , the

elasticity �png (pn, n) may be non-positive. The right-hand side of equation (29)
is then non-increasing in pn, either through the elasticity of the cost function
(by assumption (A1)), or through �PD (pn/α (n)) (by assumption (A3)). Hence,
once non-positive, the elasticity �png (pn, n) can never become positive again.
In other words, the function g (·, n) is quasi-concave, and the set P (n) of prices
entailing non-negative profits, defined by equation (5), is an interval.
Next, we show that the joint profit bΠ (P, n) ≡ PD (P )−nC (D (P ) /nα (n)),

computed under the constraint that every firm produce the same quantity, is
increasing at a price P = p∗n/α (n), such that p

∗
n is a critical price. Consider

indeed the derivative with respect to P of the joint profit function:

∂bΠ (P, n)
∂P

= D (P )

∙
1 +

µ
α (n)P − C 0 (D (P ) /nα (n))

α (n)P

¶
�PD (P )

¸
, (30)

and replace α (n)P by p∗n, using the first order condition (FOC) that defines a
critical price:

∂bΠ (p∗n/α (n) , n)
∂P

= D (p∗n/α (n))

∙
1− �PD (p

∗
n/α (n))

�pd (p∗n, p
∗
n, n, 1)

¸
= D (p∗n/α (n))

∙
−�pnd (p

∗
n, p
∗
n, n, 1)

�pd (p∗n, p
∗
n, n, 1)

¸
. (31)

By assumption (A2), this derivative is positive. Also, ∂bΠ (P, n) /∂P becomes
negative at zero by assumption (A3), since �PD (P ) is non-increasing and since
�yC

0 (D (P ) /nα (n)) �PD (P ) < 1 for any P . Hence, the joint profit functionbΠ (·, n) is (strictly) quasi-concave, so that supP∈(0,P) bΠ (P, n) > p∗n/α (n). Also,

supP bΠ (P, n), unless infinite, must belong to the set P (n) of prices entailing
non-negative profits. In any case, as this set is an interval, p (n) ≤ p∗n <

α (n) supP bΠ (P, n) implies: p∗n ∈ P (n).¥
Proof of Lemma 3 (Sustainability):
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As d (p, ·, n, 0) is increasing (by assumption (A2)), and C (y) /y decreasing
in y (by assumption (A1)), the revenue-cost ratio G (p, pn, n) is increasing in
pn. By definition of the limit price p (n), G (bp, p (n) , n) = 1 at bp maximizing
G (·, p (n) , n). Hence, pn ≤ p (n) is clearly a necessary condition for sustain-
ability (G (bp, pn, n) > 1 if pn > p (n)). For sufficiency, consider pn < p (n)
and G (p, pn, n) > 1 for some p. Then, G (p, p (n) , n) > 1, contradicting the
definition of p (n).¥
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