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Abstract

This paper investigates market failures due to strategic delays. We test experimentally a
discrete model of dynamic investment, where two privately informed agents have an option to
invest at the time of their choice in the presence of waiting costs. The equilibrium outcome of our
experimental game is characterized by efficient imitation but complete revelation of information
is time consuming. In accordance with the equilibrium solution, subjects better informed take
investment decision before subjects who are less informed and subjects’ decisions exhibit rational
imitation. Still, subjects do not play exactly in accordance with the equilibrium sequence and
we interpret their deviations from equilibrium play as an attempt to internalize the information
externalities.
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1 Introduction

In economic situations where decisions are based on private signals and have a common value com-
ponent, individuals may rely on whatever information they have obtained via observation of others’
actions. This process of observational learning can lead individuals to the failure to exploit their
own information in a socially optimal way. Indeed, early models dealing with observational learning,
also called social learning, and pure information externalities with exogenous timing of decisions
have shown that, because they rationally process information, selfish individuals ignore their own
information, after observing a finite number of other decisions, and imitate the “herd” (see Baner-
jee, 1992, Bikhchandani, Hirshleifer, and Welch, 1992, and Welch, 1992). Herd behavior has been
proposed as an explanation of a variety of economic phenomena such as investments breakdown in
crisis and failures of optimal technological shifts, as well as of widely observed social phenomena
such as manias, social customs, and panics. Once the timing of decisions is endogenized, individuals
might strategically delay their decisions in order to benefit from the positive information externali-
ties generated by their predecessors’ actions. Under the reasonable assumption that delay is costly,
we encounter a new form of market failure namely that all the information initially possessed by
individuals will be revealed asymptotically, but so slowly that economic welfare is much less than the
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first best. As emphasized by Gale (1996), the most important lesson taught by social learning mod-
els is that information externalities result in serious failures to achieve a desirable social outcome.
Whether the outcome is delay or incomplete revelation of information, the important ingredient is
the free rider problem and the failure to internalize an information externality.

With the emergence of behavioral economics, however, economists have come to question whether
human individuals tend to actually ignore costs imposed on others when reaching economic decisions.
Experimental studies, with few exceptions, find evidence against theories based on selfish motives,
and, despite the strong predictions generated by classical theory in externality settings, social sci-
entists often question the truths provided by it.1 Individuals who also care about others’ payoff
partially internalize negative externalities when they interact with other individuals. As a conse-
quence, the interaction of rational individuals with social preferences leads to a more desirable social
outcome than the one resulting from the interaction of rational selfish individuals in a social learning
environment. Despite the theoretical interest of social learning models and their ability to explain
a wide range of issues, it seems therefore worth assessing the usefulness of the rational and selfish
view of herding. In the present paper, we provide evidence on the validity of strategic delays due to
information externalities by testing experimentally two parametric versions of an endogenous-time
herding game which combines irreversible investment, private information, and learning from others.

In the pioneering works on rational herding, the sequence of decisions is arbitrarily chosen,
and social suboptima result with agents herding into an action and therefore never revealing their
informative signals for later agents to use.2 In subsequent models on rational herding agents can
try to rectify the difference between their private information and the observed actions of others
by waiting. These models focus therefore on strategic delays caused by information externalities.
Pioneer contributions to this endogenous-time herding literature include among others Chamley and
Gale (1994), Gul and Lundholm (1995), and Gale (1996) (Chamley, 2004 is the state of the art
in formal modeling of rational herding and it provides substantive understanding of how the above
mentioned models work).

Chamley and Gale (1994) consider a discrete-time model where a random number of agents have
an opportunity to invest or not to invest with the option to invest latter. They suppose moreover
that the true investment return is an increasing function of the number of possible investment op-
portunities, and that each agent’s waiting cost is given by a common discount factor. By focusing on
symmetric perfect Bayesian equilibria in which agents apply behavioral strategies, Chamley and Gale
show that information aggregation is inefficient in this setting. Indeed, situations where all agents
immediately invest and the game ends, and situations where no agent invest and no information is
revealed at all occur with positive probability in equilibrium.

In contrast to Chamley and Gale (1994), time is assumed to be continuous in Gul and Lundholm
(1995). In this model, two agents are asked to assess the future value of a project. Agents’ utility
functions capture the trade-off between the accuracy of a prediction and how early the prediction is
made. Each agent has a private signal which helps him to forecast the sum of the signals, i.e., the
value of the project. At equilibrium, agents’ forecasts tend to cluster and they predict at almost the
same date. In contrast with what is observed in Chamley and Gale’s (1994) model, this clustering of
the agents’ choices is informationally efficient.3 It remains that the sum of agents’ expected utility is
higher under exogenous timing than under endogenous timing, although the latter is informationally
the most efficient.

1Gintis, Bowles, Boyd, and Fehr (2005) is a recent synthesis of research in different disciplines which argues that
cooperation stems not from the stereotypical selfish agent acting out of disguised self-interest but from the presence of
“strong reciprocators” in a social group.

2Lee (1993) and Smith and Sorensen (2000) have respectively shown that the two key assumptions for herding are
the discreteness of the set of actions and the boundedness of the private signals.

3What drives Gul and Lundholm’s (1995) result is the dimension of the action space. In the Chamley and Gale
framework, the decision of an agent is binary: to invest or not to invest (i.e., to wait). In the Gul and Lundholm
framework, the agents’ action space is a continuum. Hence, when an agent acts in this latter, he reveals both his signal
and his belief about the others’ signal.
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This last feature of the equilibrium in Gul and Lundholm’s (1995) model illustrates a general
result; when agents are involved in endogenous timing of decisions and delays are costly, there is a war
of attrition effect that reduces welfare. As the rational herding literature made clear, informational
externalities result in serious failures to achieve a desirable social outcome. Sources of market failures
can either be too much delay or incomplete revelation of information.

This article investigates market failures due to strategic delays in an experimental endogenous-
time herding game, called the waiting game. The basic story of the waiting game is as follows. Each
of two agents can invest in one of two types of projects where the investment decision is irreversible
and publicly observable. One of the projects is profitable and the other is unprofitable for both
agents, but no one knows for sure which of these states of nature is the case. Each agent initially
draws a conditionally independent piece of information about the state of nature and agents might
have different information precision. Agents decide not just which project to choose but when to
undertake the project, and there is a cost for delaying the project choice. The equilibrium of our two
experimental games possesses the interesting feature that social learning is efficient, i.e., investment
decisions reveal completely the private information. However, information might be fully revealed
only after a long delay which entails a loss of social welfare. In other words, strategic delays due to
information externalities produce suboptima results.

The main goal of the experiment is to test for the empirical relevance of strategic delays caused
by information externalities particularly since it is the only source of market failure in the game
considered. Indeed, previous experimental studies dealing with social learning and pure informa-
tion externalities considered situations in which rational herding could be on the wrong action (see
Anderson and Holt (1997) and Sgroi (2003) for the exogenous and endogenous case, respectively).
On the contrary, the equilibrium outcome of our experimental games is characterized by efficient
imitation but complete revelation of information is time consuming. The problem facing a subject is
thus to optimally balance is desire to observe the actions of others, infer useful information, against
the cost of delaying investment inasmuch as by waiting he imposes a negative externality on the
other subject. At a more basic level, as with most experiments, the central notion is (Bayesian)
rationality. The waiting game is a relevant interactive decision situation to measure the degree of
subjects’ strategic sophistication as it is dominance solvable. More importantly, the rational herd-
ing literature demonstrates that despite the rationality of individual behavior, the process of social
learning is inefficient or fails completely. In fact, it is often because of that rationality that informa-
tion externalities result in serious failures to achieve a desirable social outcome which hints at social
benefits of boundedly rational behavior by individuals. At a more basic level, we experimentally
investigate whether people respond appropriately to private signals and publicly observed actions.

The paper is organized as follows. In Section 2 we introduce the waiting game, we characterize
its unique perfect Bayesian Nash equilibrium and we derive three testable hypotheses. Section 3
presents the experimental design. In Section 4 we describe the results of our experimental study and
we compare them with the equilibrium predictions. Section 5 concludes the paper.

2 Theory and Research Hypotheses

2.1 The Waiting Game

The waiting game is a non-cooperative two-person game where both players can delay their in-
vestment opportunity in the presence of waiting costs. Investment returns are uncertain, actions
are observable, and both players are endowed with a private signal correlated with the investment
return. Any preplay communication between players is ruled out in this game.4

4As our model is void of any competition effects, the reader might ask: “Why can’t the players just exchange their
private information directly?” First, there are economic situations in which communication is anything but ‘cheap
talk’. Second, even if one takes the possibility of cheap talk seriously, it is not clear that this will alter the conclusions
of the analysis. Indeed, in a closely related dynamic investment model with information externalities, Gossner and
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Formally, we consider two risk-neutral players who can decide not just which investment option
to choose, but in which period they invest. Time is discrete, and the periods are indexed by t ∈
{1, . . . , T}. In the first period, each player i ∈ {1, 2} chooses an action a1

i ∈ A = {O(+), O(−),W},
where action O(+) stands for investing in option O(+), action O(−) stands for investing in option
O(−), and action W stands for “waiting”. In the following periods, T ≥ t ≥ 2, each player i chooses
an action at

i ∈ At(at−1
i ), where

At(at−1
i ) =

{
A if at−1

i = W,
∅ otherwise.

Thus, if a player invests in any given period, he has no other decision to make in subsequent periods.
Each player’s actions are publicly observed. Because O(+) and O(−) are irreversible actions, we call
them terminal actions.

Each player i is endowed, before the start of the game, with a private information, i.e., not
observable by the other player, which is correlated with a payoff relevant variable. Let mi denote
player i’s private information. The mi’s are independently and uniformly distributed in a discrete
set of possible signals M = {−m,−m + 1, . . . ,−1, 0, 1, . . . , m− 1,m}, where m is a strictly positive
integer.

We assume that the terminal actions O(+) and O(−) are negatively correlated in the following
sense. Investment option O(+)’s undiscounted net return is equal to R if m1 + m2 > 0 and −R if
m1 +m2 < 0 whereas investment option O(−)’s undiscounted net return is equal to R if m1 +m2 < 0
and −R if m1 + m2 > 0, where R is a strictly positive real number. If m1 + m2 = 0 then both
investment options reward zero. Waiting has a positive opportunity cost c, which is a strictly positive
real number that we assume to be constant for each period.5 In summary, if player i invests in option
O(+)

(
respectively option O(−)

)
and this invesment takes place in period t, player i’s payoff is given

by R− (t− 1)c if m1 + m2 > 0 (respectively if m1 + m2 < 0), 0 if m1 + m2 = 0, and −(R− (t− 1)c)
if m1 + m2 < 0 (respectively if m1 + m2 > 0). If player i never invests then he gets nothing. For
practical purposes, we assume that R− (T − 1)c ≥ 0 which implies that T ≤ (R + c)/c.

The outcome of the waiting game in period t is the vector of actions taken by both players, where
at

i = ∅ if at−1
i ∈ {∅, O(+), O(−)}. The history of the game in period t, which we denote by ht, is a

sequence of outcomes up to period t, i.e., ht =
(
(a1

1, a
1
2), . . . , (a

t
1, a

t
2)

)
and h0 = ∅. Let Ht denote the

set of all possible histories up to period t. Player i’s pure strategy si is represented by a sequence
{st

i}T≥t≥1 where

st
i : Ht−1 ×M → At(at−1

i )
(ht−1,mi) 7→ st

i(h
t−1,mi),

describes the “pure strategy of player i at period t”. A profile of pure strategies is denoted by
s = (s1, s2). Mixed strategies are defined the usual way.

2.2 The Equilibrium

Before characterizing players’ optimal behavior in the waiting game, let us formally define the thresh-
old strategy.

Definition. Player i ∈ {1, 2} follows the threshold strategy if he chooses his actions according to the
map

Melissas (2004) have shown that there always exists an equilibrium in which no credible information is transmitted
through words. Moreover, for projects with a low expected net value, the babbling equilibrium is the only one.

5Ideally, the opportunity cost of waiting should be modeled as a common discount factor 0 < δ < 1. Linear costs
are however easier to implement in the laboratory.
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• s1
i (∅,mi) =





O(+) if mi > θ1

O(−) if mi < −θ1

W if − θ1 ≤ mi ≤ θ1,

• for all T ≥ t ≥ 2, st
i(h

t−1,mi) =





O(+) if mi > θt or st−1
−i = O(+)

O(−) if mi < −θt or st−1
−i = O(−)

W if − θt ≤ mi ≤ θt and st−1
−i = W,

where, for each period T ≥ t ≥ 1, θt is a positive real number such that θt > θt+1.

The threshold strategy possesses the three following features. First, players with more extreme
signals choose to move early. This is a reasonable feature as a player’s expected payoff depends only
on his own action and as high signal absolute values give a more accurate prediction of the actual
return to investment.6 Second, as actions reflect information, waiting is often more valuable than
taking a terminal action in the first period, and, of course, the value of waiting becomes zero as soon
as one of the two players has taken a terminal action. In other words, if a player has not yet taken
a terminal action at the beginning of period T ≥ t ≥ 2 and the other player has taken a terminal
action in the previous period, then imitation takes place in period t whatever the private information
of the player who waited longer.7 Third, if both players adopt the threshold strategy, imitation is
efficient, i.e., players can potentially make errors only if they invest simultaneously.

It turns out that the threshold strategy characterizes optimal play in the waiting game as stated
in the following proposition.

Proposition. The threshold strategy is the unique rationalizable strategy in the waiting game. Ac-
cordingly, the waiting game has a unique perfect Bayesian Nash equilibrium in which each player
adopts the threshold strategy.

Proof. See Appendix 1.

As the threshold strategy is the unique rationalizable strategy, the strategy profile according to which
both players adopt the threshold strategy is the unique outcome of the process of successive elimina-
tion of strictly dominated strategies in the waiting game. Therefore, optimal behavior in the waiting
game does not require that players’ beliefs are consistently aligned, i.e., that each player anticipates
that the other will do what this other player indeed plans to do, but is justified by rationality alone
(Bernheim, 1984 and Pearce, 1984 independently developed the notion of rationalizability). We now
compute the threshold values θt, for all T ≥ t ≥ 1, as they are sufficient to characterize each player’s
optimal behavior in the waiting game.

2.2.1 Threshold value in period 1

Let m1 be the smallest signal value leading to terminal action O(+) in period 1. By symmetry,
−m1 is the largest signal value leading to terminal action O(−) in period 1. In other words, if
mi ∈ {m1, . . . , m}, player i invests in option O(+) in period 1, if mi ∈ {−m, . . . ,−m1}, player
i invests in option O(−) in period 1, and otherwise player i waits. By definition, m1 is also the
smallest signal value for which the expected value of choosing action O(+) in period 1 is strictly
larger than the expected value of waiting. If player i holds signal value m1, his expected value of
choosing action O(+) in period 1 is given by 2m1 R/(2 m+1). Besides, the expected value of waiting
until period 2 is given by 2m (R−c)/(2m+1). Although player i’s potential reward is reduced by the

6In other words, high signal absolute values are more informative, i.e., the magnitude of the signal indicates its
quality.

7If private signals were observable, each player’s optimal decision would be to invest in option O(+) in the first
period if m1 + m2 > 0, to invest in option O(−) in the first period if m1 + m2 < 0, and in case m1 + m2 = 0 any action
(mixture of actions) would be optimal. Thus, the observable signals scenario corresponds to the first-best solution.
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cost of waiting, he is almost sure to get a strictly positive payoff (except in the case where the sum of
the signals is equal to zero). Indeed, player i will decide O(+) in period 2 if player −i has chosen O(+)

or waited in period 1, which reveals that m−i ∈ {−m1 + 1, . . . , m}. Similarly, player i will choose
O(−) in period 2 if player −i has chosen O(−) in period 1, which reveals that m−i ∈ {−m, . . . ,−m1}.
Thus, whatever the terminal action chosen by player −i in period 1, player i imitates in period 2.
To sum up, player i, who holds signal value m1, invests in option O(+) in period 1 if and only if

m1 >
m (R− c)

R
. (1)

According to inequality (1), all signal values strictly larger than θ1 = m(R − c)/R will lead to
terminal action O(+) in period 1. Similarly, all signal values strictly smaller than −θ1 will lead to
terminal action O(−) in period 1. Since c > 0, inequality (1) shows that the extreme signal values m
and −m always lead to a terminal action in period 1.

2.2.2 Threshold value in period n ≥ 2

If both players choose a terminal action in period 1, the waiting game is over. If one of the two
players chooses a terminal action in period 1, the other player imitates his choice in period 2, and
the waiting game ends in period 2. Indeed, suppose that player 1 waits in period 1 and observes that
player 2 invests in option O(+) in period 1. Player 1 then infers that player 2 has a larger signal in
absolute value than his own private signal (since m2 > θ1), and by observing terminal action O(+)

player 1 is sure that the sum of the signals is strictly positive. The same reasoning applies if player
1 observes player 2 investing in option O(−). The remaining case consists in both players waiting
in period 1. In such a case, both private signals belongs to the set {−m1 + 1, . . . , m1 − 1}. We
now identify the positive signal values that lead player i to invest in option O(+) in period 2 if both
players have waited in period 1.

Let m2 be the lowest signal value for which player i chooses O(+) in period 2. In other words,
if his signal value belongs to {m2, . . . , m1 − 1}, player i chooses O(+) in period 2. He prefers to
take terminal action O(+) in period 2 if the expected value of that action is strictly larger than the
expected value of waiting until period 3. The expected value of choosing O(+) in period 2, with
signal value m2 is given by 2m2 (R − c)/(2m1 − 1). Besides, the expected value of waiting until
period 3 is given by (2m1 − 2) (R − 2c)/(2m1 − 1). So, player i, when endowed with private signal
m2, invests in option O(+) in period 2 if and only if

m2 > θ2 =
(m1 − 1) (R− 2c)

R− c
. (2)

Similarly, if player i’s signal value is strictly smaller than −θ2 he plans to take terminal action O(−)

in period 2.
More generally, the following recurrence relation allows one to compute the threshold value for

each period T ≥ t ≥ 2:

θt =
[θt−1](R− tc)
R− (t− 1)c

,

where θ1 = m(R− c)/R, and [k] is the integer part of k.

2.3 Research Hypotheses

From now on, whenever terminal decisions are not taken simultaneously in the waiting game, the
player who takes his terminal decision first is called the leader and the player who takes his terminal
decision second is called the follower. Summarizing the theoretical predictions of the waiting game,
we formulate the following testable hypotheses:
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Ordering Hypothesis: The leader has a strictly better quality signal than the follower.

Imitation Hypothesis: The follower chooses one period after the leader and takes the same
terminal action whatever his private information.

Equilibrium Hypothesis: The sequence of choices is consistent with the equilibrium sequence.

Of course, the equilibrium hypothesis implies the two other hypotheses.

3 Experimental design

In this section, we first introduce the two parametric versions of the waiting game that we imple-
mented in the laboratory. The two versions of the game differ only according to the cost of waiting
which is our main treatment variable. We refer to our two experimental conditions as to the high
cost treatment and the low cost treatment. Both parametric versions of the waiting game lead to
identical equilibrium play. Second, we present the practical procedures of the two reference treat-
ments. Third, we introduce the two additional experimental conditions that were realized in order
to check for the robustness of the results with respect to methodological choices. Both additional
treatments are based on the parametric version of the waiting game with a high waiting cost. The
first control treatment is identical to the high cost treatment except for the matching rule of the
subjects and the second control treatment only differs from the first control treatment as far as the
payoff scheme is concerned.

3.1 The two reference treatments

In our experiment, we set R equal to 100 and m equal to 4. Thus, the discrete set of possible signals
is given by {−4,−3,−2,−1, 0, 1, 2, 3, 4}.8 In the high cost treatment (or simply Treatment 1) the
opportunity cost of waiting, c, is set equal to 20. In the low cost treatment (or simply Treatment 2)
the opportunity cost of waiting is set equal to 10. We set the number of periods of the parametric
waiting game to 6 and 11, respectively for the high cost and the low cost treatment. Indeed, if c = 20,
the expected gain (or loss) is null in period 6. Similarly, if c = 10, the expected gain (or loss) is null
in period 11. Note that in the last period of the game each subject has to choose a terminal action
and that he is aware that such a forced choice would have no impact on his earnings. According to
the threshold strategy, the predicted decision periods, in the case where the other player has signal
value 0, are given in Table 1. For positive (negative) signal values the leader should choose O(+)(
O(−)

)
in the appropriate period. Note that, for both values of c, the threshold strategy predicts

exactly the same sequence. This particular sequence of decisions leads to a complete identification
of signals, since each player can infer the signal value of the player who is leader, i.e., the player who
decided to take a terminal action first, by observing the period in which he invests. We note this
strategy of perfect identification 4/3/2/1. By choosing a relatively low cost of waiting, even in the
high cost treatment, we want to avoid an equilibrium strategy which predicts to behave in the same
manner with two different signal absolute values. By doing so, equilibrium predictions are easy to
distinguish from subjects’ behavior if any difference is observed.

As the theoretical predictions are independent of the cost of waiting, another possible parametric
choice would have been to set the number of periods equal to 6 in the low cost treatment. But
in such a case we would not have been able to distinguish, between both reference treatments, the
behavior of subjects who got signal value 0 and who observed the other player waiting. Therefore we
decided to set a higher number of periods for the low cost treatment in order to be able to observe
different behaviors with an uninformative signal. Indeed, in the low cost treatment, a subject who

8Though this set of possible signals is not very large, we think that it is large enough to get rich data.
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Table 1: Leader’s optimal decision period.

Signal in absolute Observed sequence Optimal Thresholds in treatment

value is equal to of actions decision period Low cost High cost

4 {∅} 1 θ1 = 3.60 θ1 = 3.20

3 {W} 2 θ2 = 2.66 θ2 = 2.25

2 {W,W} 3 θ3 = 1.75 θ3 = 1.33

1 {W,W,W} 4 θ4 = 0.86 θ4 = 0.50

got signal value 0 can only choose one of the two terminal actions without care before period 11 if
he is sure that the other subject has signal value 0 too.

3.2 Practical procedures

The experiment was run on a computer network using 32 inexperienced subjects at the BETA
laboratory of experimental economics (LEES) at the University of Strasbourg. The subjects were
recruited by phone from a pool of 400 students. Two sessions were organized, one with 7 groups of
two subjects and the other one with 9 groups of two subjects. The first session corresponds to the high
cost treatment (Treatment 1) and the second session corresponds to the low cost treatment (Treatment
2). Subjects were instructed that each of them would be matched with another subject for the whole
duration of the experiment. Instructions were read aloud,9 followed by a small questionnaire and
two trial periods which were not counted in the subjects’ scores. The experiment was divided into 20
rounds. In order to avoid losses for the subjects, they started the session with an endowment equal to
the maximal loss possible over the 20 rounds. At the beginning of each round, the random drawing
of the signal value was simulated on the screen by a wheel of fortune on which the 9 signal values
appeared. The wheel stopped randomly on one of the possible values after a few seconds. After
observing their signal value, subjects were asked to make their first period decision among the three
possibilities: invest in option O(+), invest in option O(−), and Wait. In each period each subject’s
computer screen displayed the number of the period, the decision taken by the other player in the
previous periods, and the remaining opportunity gain or loss. If the other subject had already taken
a terminal action in one of the previous periods, the terminal action taken and the corresponding
period were displayed. For example, if subject A chose to invest in option O(+) in period 1 in the
high cost treatment, and subject B waited at least until period 3, subject B’s screen displayed the
following information in period 3: “Subject A has chosen to invest in option O(+) in period 1” and
“The third period’s opportunity gain or loss is equal to 60 Experimental Currency Units”. Subjects
were paid according to their relative performance with respect to the average performance of the
whole group of subjects in a session. Let Xi be the total number of Experimental Currency Units
(ECU) earned by subject i during the experiment. ECU were converted into French francs (FF) at
the end of the session at the rate of 100Xi/X, where X is the average payoff of the subject sample
over all rounds. The duration of an experimental session was about one hour and the average earning
was equal to 100 FF per subject.10

3.3 Additional treatments

We organized two additional sessions with 32 inexperienced subjects. Both were based on the same
parametric version of the waiting game than the high cost treatment, i.e., m = 4, R = 100 and

9The instructions are available from the authors upon request.
10The conversion rate between the euro and the French franc has been set at 6.55957 FF per euro.
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c = 20. They differed with respect to the practical procedures. The first control treatment (or
simply Treatment 3), which involved 16 subjects, has the same practical procedures than Treatment
1 except for the matching rule of the subjects. In Treatment 3, subjects were rematched with a
different anonymous partner after each round. By comparing subjects’ behavior in Treatment 1 with
subjects’ behavior in Treatment 3, we can report on the impact of reputational effects in the waiting
game.11 The second control treatment (or simply Treatment 4), which also involved 16 subjects,
has the same practical procedures than Treatment 3 except for the payoff scheme: the accumulated
points of a subject were converted at a conversion rate of 3 FF for 100 ECU.12 The second control
treatment was implemented in order to check if the payoff scheme used in the reference treatments
has not induced specific behaviors by the subjects. Indeed, notice that though players’ payoffs are
independent in the waiting game, subjects’ payoffs were not independent over the whole session in
any of the reference treatments.

4 Results

We organize our experimental results according to our three research hypotheses.

4.1 Ordering Hypothesis

The ordering prediction states that the leader is strictly better informed than the follower. Actually,
players who hold equal quality signals should act simultaneously and a player who is strictly better
informed should not act after a player who is less informed. With the parameters used in our
experiment, the ordering prediction even implies that the player who is strictly better informed
takes a terminal action strictly before the other player. Table 2 summarizes the data for our two
reference treatments.

Table 2: Predictive success of the ordering hypothesis in the two reference treatments.

Simultaneous investments Correct ordering Incorrect ordering

Low cost High cost Low cost High cost Low cost High cost

Identical signals 0.39 0.54 — — — —

(in absolute value) [0, 0.80] [0, 0.83]

Different signals 0.17 0.22 0.77 0.71 0.06 0.07

(in absolute value) [0, 0.44] [0.13, 0.39] [0.44, 1] [0.50, 0.86] [0, 0.13] [0, 0.13]

In Treatment 1 (c = 20), 19 % (26/140) of the rounds involve subjects with the same signal
in absolute value.13 In such cases, the simultaneity hypothesis is accepted only in 54 % (14/26) of
the cases (the lowest and the highest percentages observed over all the groups are given in square
brackets). When subjects have different signals in absolute value, they tend to choose more frequently
in the predicted ordered sequence. Indeed, the ordering prediction is satisfied in 71 % (81/114) in
such cases. Overall the compatibility rate for the ordering prediction, in the high cost treatment, is
68 % (95/140).

11Even by being rematched with a different partner after each round, a subject can nevertheless try to convince the
whole group to behave in a specific manner. Strictly speaking, reputational effects do not completely disappear. Still,
recent experimental evidence suggests that the random matching procedure is sufficient to prevent the development of
a cooperative norm in the controlled conditions of the laboratory (Duffy and Ochs, 2005).

12The average earning was equal to 96 FF per subject in this case.
13Note that from a theoretical point of view, the probability that both players get the same signal in absolute value

is equal to 17
81
' 21%.
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In Treatment 2 (c = 10), the simultaneity hypothesis for equal quality signals is accepted only in
39 % (15/38) of the cases. This percentage is lower than in the high cost treatment but by applying a
two-tailed Mann-Whitney U test, we can accept the null hypothesis of no difference at the 5 percent
level.14 On the other hand, the data for the low cost treatment are even more in accordance with
the ordering prediction when the two subjects have different quality signals, since the prediction is
satisfied in 77 % (110/142) of the cases. Nevertheless the difference with the high cost treatment is
not significant (two-sided Mann-Whitney U test at the 5 percent level). Overall the compatibility
rate for the ordering prediction, in the low cost treatment, is 69 % (125/180). Applying a two-tailed
Mann-Whitney U test, we conclude that there is no significant difference between this compatibility
rate and the high cost treatment’s compatibility rate at the 5 percent level.

Table 5 and Table 6 in Appendix 5 summarize the data concerning the ordering prediction for
the two control treatments. Overall the compatibility rate for the ordering prediction is 63 % and
61 % for Treatments 3 and 4 respectively. These rates are lower than in Treatment 1 because in
Treatments 3 and 4 there are fewer correct orderings. This is probably due to the fact that mutual
consistency is more difficult to achieve with changing partners than with a fixed partner.

4.2 Imitation Hypothesis

The imitation prediction states that the player who acts second takes the same terminal action than
the player who acts first, and decides immediately after him. By immediate imitation we mean
imitation in the period immediately following the leader’s decision period. We first comment on the
experimental results of our two reference treatments.

The average observed imitation rate in the high cost treatment is equal to 98 %. Applying a
one-sided χ2 test, we can accept the null hypothesis of no difference between the average imitation
rate and the equilibrium prediction (imitation rate of 100 %) at the 5 percent level. Similarly, the
average observed imitation rate in the low cost treatment, equal to 96 %, is not significantly different
from 100 % at the 5 percent level. However, imitation was delayed in a few cases, so that the
average rates of immediate imitation are a little lower, 97 % and 91 % for the high cost and the low
cost treatment respectively. Nevertheless, both rates of immediate imitation are not significantly
different from the equilibrium prediction (p = 0.97 and p = 0.18 for the high cost and the low cost
treatment respectively). Furthermore, imitation rates and immediate imitation rates are relatively
stable over rounds (see Figure 1 and Figure 2 below), although the immediate imitation rate seems to
be more stable in the high cost treatment than in the low cost treatment. We interpret this stability
as reflecting confidence of the subjects. In almost all rounds, imitation was considered as a better
decision than taking the opposite terminal action. This conclusion seems to be strengthened by the
observation that imitators were not discouraged when they experienced a loss in the previous round.
In a few cases a subject who experienced a loss as imitator was again in the position of imitator in
the next period. In all these cases (3 cases in the high cost treatment and 10 cases in the low cost
treatment) we observed imitation after a loss.

We observed a few cases for which the subject who acted second did not imitate the subject
who acted first, even after a longer delay. Note that if a subject imitates with a delay he faces an
extra cost of waiting although he is certain that he will not observe any further information. Under
the assumption of expected value maximisation, subjects who do not imitate immediately either act
irrationally or doubt the rationality of the leader. If a follower doubts the rationality of the leader,
risk aversion might justify delayed imitation as such a strategy clearly reduces the variance of the
payoffs. A subject who chooses a different terminal action than the subject who acts first, does not
use the information revealed by the observed choice. We observed only 8 rounds over 320 in which
the ordering prediction was satisfied but the imitation prediction was not. In 3 of these cases the
subject who acted second took a terminal action immediately after the subject who acted first, but

14Note that in the low cost treatment, 21 % (38/180) of the rounds involved subjects with the same signal in absolute
value.
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Figure 1: Imitation rate (◦) and immediate imitation rate (¨) in Treatment 1.
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Figure 2: Imitation rate (◦) and immediate imitation rate (¨) in Treatment 2.
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followed his private signal. The other 5 cases are a combination between opposite terminal actions
and excessive delay, in three of which the subject who acted second followed his private signal.

Figure 5 and Figure 6 in Appendix 5 show the temporal paths of the immediate imitation rate
and the imitation rate for Treatments 3 and 4. The average observed imitation rates are equal to 94
% and 96 % for Treatment 3 and 4 respectively. The average observed immediate imitation rates are
equal to 91 % and 93 % for Treatment 3 and 4 respectively. The two rates of imitation are slightly
lower in Treatments 3 and 4, compared to Treatment 1.
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4.3 Equilibrium Hypothesis

We turn now to the equilibrium prediction, according to which “the sequence of choices is consistent
with the equilibrium sequence”. The purpose of this section is precisely to try to measure the
adequacy between the observed and the predicted sequence of choices. We gathered 280 and 360
individual decisions, respectively for the high cost treatment and the low cost treatment.

Leaders’ behavior

We first report on the decisions of the subjects who happened to be leaders in the choices sequence.
More precisely, we consider only the decisions of the leader when decisions are ordered, and the
decisions of both players when decisions were taken simultaneously, leaving the followers’ decisions
out. Figure 3 and Figure 4 give representations of the data and provide comparisons with the
theoretical prediction, respectively for the high cost treatment and the low cost treatment. The
horizontal axis measures the signal value, and the vertical axis indicates the period at which the
terminal action was taken by the leader. A point in the diagram relates the observed decision
period with the signal value of the leader. Since most combinations are observed several times,
their frequency is represented by the size of the points in the diagram. Hence, spheres represent the
observed choices and the equilibrium strategy is represented by the bold circles. Remind that if the
leader adopts the equilibrium strategy, he chooses a terminal action in period 1 if his signal is 4 or
(-4), in period 2 if his signal is 3 or (-3), in period 3 if his signal is 2 or (-2) and in period 4 if his
signal is 1 or (-1).

Signal

Terminal Period

6

- 4 - 3 - 2 - 1 0 1 2 3 4

1
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Figure 3: Leaders’ terminal decision period related to the signal value for the high cost treatment
(179 observations).

With respect to the equilibrium strategy, points below the “theoretical circles” can be interpreted
as exhibiting impatience, and points above the theoretical circles as exhibiting excessive delay. Ob-
viously, in our two reference treatments, most of the data fall on or below the theoretical circles and
very few above. In particular, we observe that leaders holding signal value 3 or (-3) often choose a
terminal action in period 1 instead of period 2 as predicted. More precisely, for the high cost treat-
ment, respectively 72 % and 82 % of the leaders’ terminal decisions are taken in period 1 for signal
value equal to (-3) and 3. For the low cost treatment, 79 % and 82 % of the leaders’ terminal decision
period is 1, respectively for signal value equal to (-3) and 3. Moreover, a number of observations fall
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Figure 4: Leaders’ terminal decision period related to the signal value for the low cost treatment
(219 observations).

on the theoretical circles, and therefore fully agree with the theoretical prediction. For signal values
equal to 4 in absolute value, all observations agree with the theoretical prediction.

For Treatments 1 and 2, applying two-tailed Kolmogorov-Smirnov (KS) tests, we cannot reject
the null hypothesis that subjects holding signal 4 and 3 in absolute value take a terminal action in
period 1 at the 5 percent significance level.15 For signal values 2, 1 (in absolute value) and 0 there is
no clear pattern, neither for the high cost treatment nor for the low cost treatment. More precisely,
for these signal values and for both levels of cost, we cannot reject the null hypothesis that the
distribution of induced choices is uniform over 2 or more periods at the 5 percent significance level
(two-tailed KS tests). Moreover, the sign of the signal matters for the signal of magnitude 1, since
the distribution over the set of periods differs according to sign. For the high cost treatment there is
a uniform distribution over the periods 1, 2 and 4, for signal +1 (two-tailed KS test, 5% significance
level) and over the periods 1 and 3 for signal -1 (two-tailed KS test, 5% significance level). For the
low cost treatment, the distribution is over the periods 1, 3, 4 and 5 for +1 and 1, 2, 3, 4 and 6 for
-1 ((two-tailed KS tests, 5% significance level). Similar observations can be made for signal values 2
and -2. We conclude from this analysis that absolute signal values 3 and 4 lead to a terminal action
in period 1, whereas the other signal values do not lead to a terminal action in a specific period.
A comparison between the low cost and the high cost treatment reveals that there is no significant
difference in the chosen decision period, for all signal values except zero (one-tailed KS two-samples
tests, 5% significance level except for signal value zero, 10% significance level). For the signal 0, the
distributions of terminal actions are over a larger number of periods in the low cost treatment than
in the high cost treatment, which is roughly in accordance with the equilibrium prediction.

Figure 7 and Figure 8 in Appendix 5 show the leaders’ terminal decision period related to the
signal value, respectively for Treatment 3 and 4. We gathered 320 individual decisions for both
Treatment 3 and Treatment 4. No significant differences in the distributions of the leaders choices
between the high cost treatment and Treatment 3 were observed (one-tailed KS two-samples tests,
5% significance level). Similarly, no significant differences in the distributions of the leaders choices

15Similarly to the χ2 test, the Kolmogorov-Smirnov one-sample test is a goodness-of-fit test. It compares the
null hypothesis that there is no difference between the observed cumulative frequency distribution and a theoretical
cumulative frequency distribution, with an alternative hypothesis that there is a difference. The theoretical distribution
with which our observed distributions for signal absolute values equal to 3 and 4 are compared concentrates all his
mass frequency in period 1.
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between the high cost treatment and Treatment 4 were observed (one-tailed KS two-samples tests,
5% significance level). Hence, neither the matching rule nor the payoff scheme seems to have any
influence on the leaders’ behavior in the waiting game.

Though, with respect to the equilibrium strategy, leaders’ behavior exhibit impatience, potential
leaders’ behavior exhibit excessive delay. A player is a potential leader in period n, if n is his optimal
decision period and if up to period n he has observed a sequence of “W”. Therefore, a player who
holds signal 4 in absolute value is a potential leader in period 1, a player who holds signal 3 in
absolute value is a potential leader in period 2 if he observed the other waited too, and so on. Note
that by this definition a subject can be in a position of potential leader even if he is the least informed,
in case there is excess waiting by the other subject. Over all treatments, we observe only 26 cases
for which a subject who is in a position of potential leader does not take a terminal action in the
predicted period. In 11 of these cases the subjects have the same signal quality and are both in the
position of potential leader, but one of them acts as an imitator, in some cases with excessive delay.
The lack of simultaneity in these cases may be a coordination failure. Except for two cases where
there is more than one period delay, cases of matching signal quality exhibit only a single period
of delay. 13 cases correspond to situations where the subject with the highest signal quality waits
too much periods, so that the other player becomes a leader. Finally, in 2 cases the least informed
subject becomes also potential leader because of excess waiting by the better informed subject. It
is striking that in 6 of the cases with equal signal quality, both subjects have extreme signals and
therefore should have decided upon a terminal action in period 1. Overall we observe that potential
leaders fail to act in the predicted way when they hold rather signal values below or equal 2 in
absolute value (15 cases).

Predictive success of the equilibrium

In this section we examine the predictive abilities of selected strategies compared to the threshold
strategy (also called strategy of perfect identification and shortly noted 4/3/2/1).16 In this respect,
we compute a measure of predictive success for 57 strategies that could possibly account for the
observed behavior of our subjects in the high cost treatment.17 Similarly, we compute a measure
of predictive success for 64 strategies that could possibly account for the observed behavior of our
subjects in the low cost treatment. Since the ordering and the imitation predictions are clearly
well satisfied by our experimental data, all the strategies that we select as possible candidates for
organizing the data include ordering and imitation. I.e., a higher-informative signal does not lead
to take a terminal decision later than a less informative signal, and the observation of a terminal
decision leads to adopting the same terminal action in the next period.18 In the following lines we
first explain how we apply the measure of predictive success to our data, then we justify our selection
of strategies, and finally we report on the predictive success of the selected strategies (as we use the
same selection process in both treatments, we only justify our choices for the high cost treatment).

To evaluate the predictive abilities of selected strategies we apply Selten and Krischker’s (1983)
measure of predictive success, which trades off the predictive parsimony of a theory against its
descriptive power (see also Selten (1991)). The measure of predictive success (S) is the difference
between the hit rate h and the area a (S = h − a), where the hit rate is the relative frequency of
correct predictions and the area is the relative size of the predicted subset compared to the set of
all possible outcomes. Roughly speaking, an impatient strategy, i.e., a strategy which induces all
decisions to be in the first periods, has a low area rate.

Almost all of the strategies we have selected are based on two basic reference strategies that we
call “grouping strategy” and “delaying strategy”. A grouping strategy does not decompose perfectly
the signal space. Instead, several signals lead to a terminal action in the same period. For example,

16Absolute symbols are omitted in this section.
17Qualitatively, we got similar results for Treatments 3 and 4.
18Of course, imitation only occurs if a terminal action has not already been taken and the round is not over.
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43/2/1 means that signal values 4 and 3 lead to a terminal action in period 1, signal value 2 leads
to a terminal action in period 2 and signal value 1 leads to a terminal action in period 3. 4321
is the extreme case of a grouping strategy that consists in following only one’s own information,
i.e., investing in option O(+) if the signal value is positive and investing in option O(−) if the signal
value is negative. On the contrary, a delaying strategy implies more delay than predicted by the
equilibrium strategy 4/3/2/1 that lasts at most four periods. Since apparently our subjects seemed
to be impatient, the major part of the strategies considered have only a one period delay with respect
to the equilibrium strategy. Notice however that delay may be present even if subjects are apparently
impatient. For example, a subject who holds signal value 2, and who should take terminal action
O(+) in period 3 according to the equilibrium strategy, may do so with another strategy. He may for
example adopt strategy 43/-/21, meaning that he groups signal values 4 and 3 in period 1, waits in
period 2 if his signal value is less than 3 and takes a terminal action in period 3 if he has a signal
value equal to 1 or 2 (and similarly for negative values). This strategy has the same prediction than
the equilibrium strategy for signal value 2, although the player his generally more impatient. We
consider a set of 7 grouping strategies, G = {43/2/1, 432/1, 4321, 4/3/21, 4/321, 43/21, 4/32/1},
and a set of 4 delaying strategies having a one period additional delay D1 = {-/4/3/2/1, 4/-/3/2/1,
4/3/-/2/1, 4/3/2/-/1}. The other strategies we consider are constructed by combining a grouping
strategy and a delaying strategy. We call them “hybrid strategies”. The set of hybrid strategies is
constructed step by step. We first take each grouping strategy in the set G, and we combine it with a
one period-delay. For each grouping strategy we obtain therefore two or three hybrid strategies. Then
we take the best ranked hybrid strategies with a one period-delay and we derive hybrid strategies
with two periods-delay. Again, we take the best ranked hybrid strategies with two periods-delay and
we derive hybrid strategies with three periods-delay. Finally, we also consider the following hybrid
strategy with four periods-delay: 43/-/-/-/-/21.

We test also a “näıve” strategy which consists in being always a follower, i.e., always imitating. To
sum up, the 57 strategies that we test are: 7 grouping strategies, 4 one period-delaying strategies, 6
two periods-delaying strategies, 38 hybrid strategies, the optimal threshold strategy and the follower
strategy.

In order to rank the different strategies we compute an average measure of predictive success in
the following way. First, we compute for each subject individually a measure of predictive success
for each of the selected strategies. This is obtained by computing the average hit rate over the 20
periods and the average area rate conditional on the observed signals, and taking the difference.
The selected strategies are then ranked, for each subject individually, according to this measure of
predictive success. We aggregate over the sample of subjects this measure of predictive success to
rank the selected strategies over our pool of subjects. Table 3 and Table 4 show the ranking, according
to the measure of predictive success, of part of the tested strategies respectively for the high and
low cost treatment (the complete ranking is given in Appendix 3). Recall that all selected strategies
include ordering and imitation. Hence, in many rounds, two “close” strategies will make the same
prediction. In this respect, we report the percentage of decrease for the measure of predictive success
when moving from one ranked strategy to the one ranked below. More than the value of the measure
of predictive success itself one should rely on this percentage to distinguish between strategies which
perform well.

Strategies which do particularly well in both treatments group signal values 4 and 3.19 Indeed,
all the selected strategies which group high-informative signals outperform to a large extent the
equilibrium strategy which ranks 21 and 31 respectively in the high and the low cost treatment. Thus,
when endowed with high-informative but not extreme signals, subjects’ decisions exhibit impatience
and they are not influenced by the cost of the delay. However, by considering the four best strategies
in each reference treatment, signal value 2 induces terminal decision in period 2 for the high cost
treatment whereas it induces terminal decision only in period 4 for the low cost treatment. This

19We already pointed out in our preliminary analysis that subjects often take a terminal action in period 1 when
their signal value is 3 (see Figure 3 and Figure 4).
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Strategy Measure of Predictive Rank Percentage of Cumulative percentage
Success (S) decrease of decrease

43/2/-/-/-/1 0.553630218 1
43/2/-/-/1 0.553630218 2 0.00%
43/2/-/1 0.553453851 3 0.03% 0.03%
43/2/1 0.552572016 4 0.16% 0.19%
43/-/2/-/-/1 0.548074662 5 0.81% 1.01%
43/-/2/-/1 0.548074662 6 0.00% 1.01%
43/-/2/1 0.547898295 7 0.03% 1.04%
43/-/21 0.547016461 8 0.16% 1.20%
43/-/-/-/2/1 0.535435038 9 2.12% 3.32%
43/-/-/-/21 0.535435038 10 0.00% 3.32%
43/-/-/-/-/21 0.531863610 11 0.67% 3.98%
43/-/-/2/1 0.531716637 12 0.03% 4.01%
43/-/-/2/-/1 0.531716637 13 0.00% 4.01%
43/-/-/21 0.531540270 14 0.03% 4.04%
4/32/-/-/-/1 0.530614345 15 0.17% 4.22%
4/32/-/-/1 0.530614345 16 0.00% 4.22%
4/32/-/1 0.530437978 17 0.03% 4.25%
4/32/1 0.529556143 18 0.17% 4.42%
4/3/2/-/1 0.525058789 19 0.85% 5.27%
4/3/2/-/-/1 0.525058789 20 0.00% 5.27%
4/3/2/1 0.524882422 21 0.03% 5.30%
4/3/21 0.524000588 22 0.17% 5.47%
43/21 0.522545561 23 0.28% 5.75%
4/3/-/-/21 0.512419165 24 1.94% 7.68%
4/3/-/-/2/1 0.512419165 25 0.00% 7.68%
4/3/-/-/-/21 0.508847737 26 0.70% 8.38%
4/3/-/2/1 0.508700764 27 0.03% 8.41%
4/3/-/2/-/1 0.508700764 28 0.00% 8.41%
4/3/-/21 0.508524397 29 0.03% 8.44%
4/321 0.499529688 30 1.77% 10.21%

Table 3: Measure of predictive success for the 30 first ranked selected strategies in the high cost
treatment.

shift in observed behavior between our two reference treatments, although it is in contradiction with
the equilibrium prediction, is intuitive: the less costly is the waiting option, the more waiting should
be observed. Finally, signal value 1 induces terminal action as a leader in an undetermined period
(between period 4 and 6 and between period 3 and 6 respectively for the low and the high cost
treatment).

4.4 Efficiency

Though the threshold strategy is based on a sophisticated reasoning, it sounds “natural” as possibly
being derived from a simple heuristic. It is quite obvious for most people to decide O(+) in period 1
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Strategy Measure of Predictive Rank Percentage of Cumulative percentage
Success (S) decrease of decrease

43/-/-/2/-/1 0.541401021 1
43/-/-/2/1 0.541340055 2 0.01%
43/-/-/21 0.540997119 3 0.06% 0.07%
43/-/-/2/-/-/1 0.535855630 4 0.95% 1.02%
43/-/-/-/-/21 0.533410620 5 0.46% 1.48%
43/-/-/-/2/1 0.530587121 6 0.53% 2.01%
43/-/-/-/21 0.530526154 7 0.01% 2.02%
43/-/2/-/1 0.528651440 8 0.35% 2.38%
43/-/2/1 0.528308505 9 0.06% 2.44%
43/-/-/-/-/2/1 0.527865230 10 0.08% 2.52%
43/-/-/-/2/-/1 0.525041726 11 0.53% 3.06%
43/-/21 0.524296159 12 0.14% 3.20%
43/-/2/-/-/-/1 0.523167010 13 0.22% 3.42%
43/-/2/-/-/1 0.523156851 14 0.00% 3.42%
43/2/-/-/1 0.522375720 15 0.15% 3.57%
43/2/-/1 0.522032784 16 0.07% 3.63%
43/2/1 0.518020439 17 0.77% 4.40%
43/2/-/-/-/-/1 0.516891290 18 0.22% 4.62%
43/2/-/-/-/1 0.516881131 19 0.00% 4.62%
43/21 0.486641838 20 5.85% 10.47%
4/3/-/2/1 0.477142524 21 1.95% 12.42%
4/3/-/21 0.476799588 22 0.07% 12.50%
4/3/-/2/-/1 0.471647935 23 1.08% 13.58%
4/-/-/32/1 0.468054732 24 0.76% 14.34%
4/-/-/321 0.467711797 25 0.07% 14.41%
4/3/-/-/21 0.466328623 26 0.30% 14.71%
4/3/-/-/2/1 0.466092379 27 0.05% 14.76%
4/3/2/-/-/1 0.464514876 28 0.34% 15.10%
4/3/2/-/1 0.464453909 29 0.01% 15.11%
4/-/3/2/1 0.464179561 30 0.06% 15.17%
4/3/2/1 0.464110974 31 0.01% 15.18%

Table 4: Measure of predictive success for the 31 first ranked selected strategies in the low cost
treatment.

if their signal value is 4 (almost 100% of the subjects’ decisions were in agreement with the threshold
strategy when endowed with the highest signal in absolute value). Similarly, it is also quite obvious
in period 4, if no investment has been observed, when endowed with signal value 1 to decide O(+).
Indeed, the potential loss is small and the other subject certainly has a very low signal value too.
Finally, having decided for the extreme signal values, it may seem natural to affect signal value 3 to
period 2 and signal value 2 to period 3. If the threshold strategy is so “natural” why is it not able
to predict the individual decisions made by subjects all throughout the game?

In fact, if the subjects’ concern was efficiency (which we think was definitely the case) it is
not surprising that their decisions were not totally in agreement with the theoretical predictions.
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The process of information revelation is highly time consuming in the waiting game and it leads to
large costs of delay. We interpret the subjects’ deviations from the equilibrium play as an attempt
to internalize the information externality. Two arguments can be put forward. First, over both
treatments, the observed efficiency is shortly below the theoretical one (less than 5% difference and
not significant at the 5 percent level by applying a χ2 test). Second, and more importantly, if two
players adopt the grouping strategy 43/2/1 then they get higher payoffs than theoretical ones (about
20% above). As the grouping strategy 43/2/1 was higher ranked in terms of predictive success in both
treatments than the threshold strategy, our conclusion is: subjects’ decisions exhibited impatience
because it was efficient to do so.

5 Conclusion

In this paper, we present experimental results on a two-person game where both privately informed
agents can delay their investment opportunity in the presence of waiting costs. The unique per-
fect Bayesian Nash equilibrium of the game is characterized by complete revelation of information
which implies efficient imitation. These two traits of the equilibrium, called ordering and imitation
hypothesis, are tested through the implementation of treatments with different costs of delay. We
build a treatment with a high opportunity cost of waiting and an another treatment with a low
opportunity cost of waiting. However, whatever the cost level considered, equilibrium strategies are
the same in both parametric versions of the game. Overall, the compatibility rates for the two traits
of the equilibrium are quite high. A bit more than two third of the subjects’ decisions are in accor-
dance with the ordering hypothesis in each treatment whereas almost all subjects’ decisions exhibit
rational imitation. Nevertheless, subjects’ decisions only match loosely the equilibrium sequence.
“Impatience” is observed when subjects are endowed with extreme signals (absolute signal values
equal to 3) and subjects’ decisions are also influenced by the cost of delay. We interpret the subjects’
deviations from equilibrium play as an attempt to internalize the information externalities in order
to reach a more desirable social outcome.
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