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Abstract

This paper presents an axiomatic model of decision making under uncertainty which
incorporates objective but imprecise information. Information is assumed to take
the form of a probability-possibility set, that is, a set P of probability measures on
the state space. The decision maker is told that the true probability law lies in P
and is assumed to rank pairs of the form (P, f) where f is an act mapping states into
outcomes. The key representation result delivers maxmin expected utility where the
min operator ranges over a set of probability priors –just as in the maxmin expected
utility (MEU) representation result of Gilboa and Schmeidler (1989). However, un-
like the MEU representation, the representation here also delivers a mapping, ϕ,
which links the probability-possibility set, describing the available information, to
the set of revealed priors. The mapping ϕ is shown to represent the decision maker’s
attitude to imprecise information: under our axioms, the set of representation priors
is constituted as a selection from the probability-possibility set. This allows both
expected utility when the selected set is a singleton and extreme pessimism when
the selected set is the same as the probability-possibility set, i.e. , ϕ is the identity
mapping. We define a notion of comparative imprecision aversion and show it is
characterized by inclusion of the sets of revealed probability distributions, irrespec-
tive of the utility functions that capture risk attitude. We also identify an explicit
attitude toward imprecision that underlies usual hedging axioms. Finally, we char-
acterize, under extra axioms, a more specific functional form, in which the set of
selected probability distributions is obtained by (i) solving for the “mean value”
of the probability-possibility set, and (ii) shrinking the probability-possibility set
toward the mean value to a degree determined by preferences.
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1 Introduction

In many problems of choice under uncertainty, some information is available
to the decision maker. Yet, this information is often far from being sufficiently
precise to allow the decision maker to come up with an estimate of a probability
distribution over the relevant states of nature. The archetypical example of
such a situation is the so-called Ellsberg paradox (Ellsberg (1961)), in which
subjects are given some imprecise information concerning the composition of
an urn and are then asked to choose among various bets on the color of a
ball drawn from that urn. The usual findings in this experiment is that most
subjects’ choices can not be rationalized if one assumes they hold probabilistic
beliefs. Rather, one should assume that subjects have “multiple beliefs”. In a
very influential paper, Gilboa and Schmeidler (1989) axiomatized the following
decision criterion, that allows to “solve” Ellsberg paradox: an act f is preferred
to an act g if and only if there exists a set of priors C and a utility function u
such that

min
p∈C

∫
u ◦ fdp ≥ min

p∈C

∫
u ◦ gdp.

In this functional form, C is usually interpreted as the decision maker’s set of
beliefs. To go back to Ellsberg experiment, if one takes as the set of beliefs
the distributions of the balls compatible with the information given to the
subjects, then the functional with that set captures via the min operator an
extreme form of pessimism.

However, nothing in the theoretical construct of Gilboa and Schmeidler (1989)
supports this interpretation since the information the decision maker possesses
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is not part of the model (although it is part of the motivation as, to the best
of our knowledge, in all papers on ambiguity aversion.) In this paper, we
explicitly incorporate the information the decision maker has as a primitive of
the model 1 in order to further explore properties of Gilboa and Schmeidler’s
“set of priors”.

The decision maker is assumed to have preferences over couples (P, f) where P
is a set of probability distributions over the state space (hereafter probability-
possibility sets) and f is an act. In an Anscombe and Aumann (1963) frame-
work, we axiomatize the following functional form: for two probability-possibility
sets P and Q and two acts f and g, (P, f) is preferred to (Q, g) if and only if

min
p∈ϕ(P )

∫
u ◦ fdp ≥ min

p∈ϕ(Q)

∫
u ◦ gdp.

For a fixed probability-possibility set, this is identical to maxmin expected
utility à la Gilboa and Schmeidler (1989): in their setting, the (un-modeled)
prior information that the decision maker has is given. The novel aspect here
is that the link between the information possessed by the decision maker and
the “set of priors” is made explicit, through the mapping denoted by ϕ. We
will call ϕ(P ) the selected probability-possibility set. The properties of the
function ϕ can be further specified, as it embeds the decision maker’s attitude
toward imprecision.

The objects (P, f) are not standard (although see the discussion of related
literature below). That the decision maker has preferences on such pairs means
that, at least conceptually, we allow decision makers to compare the same act
in different informational settings. The motivation 2 for this formalization can
be best understood going back to Ellsberg’s two urns example. In urn 1 there
is a known proportion of black and white balls (50-50) while in urn 2, the
composition is unknown. The decision maker has the choice to bet on black
in urn 1 or on black in urn 2. The action (bet on black) itself is “the same”
in the two cases but the information has changed from a given probability
distribution (1

2
, 1

2
) (urn 1) to the simplex (urn 2).

We also believe that our model can be used to think of situations besides
laboratory experiments. Imagine a firm in the agro business contemplating
investing in various crops in different countries. Then, P and Q would capture
information relative to (long term) weather forecast in different parts of the
world, while f and g would capture the act of investing in a particular crop.
One could also consider the example of investing in some stock in one’s home
country in which information is supposedly easier to acquire than in a similar

1 We do not provide a theory of how such information can be generated: see for
instance Al Najjar (2007) and examples in Lehrer (2007).
2 We will develop these arguments in Section 2.1.
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stock in some exotic country. The widespread preference to invest in home
country stocks (the so-called “home bias”) can thus find an illustration in
our model. Finally, a particular case of our model, arguably not the most
interesting one as will be discussed in section 3.3, is one of choice over sets of
lotteries in which (P, f) is evaluated by the induced distributions on outcomes.

Next, we study the properties of our decision criterion. We define a notion of
comparative imprecision aversion with the feature that it can be completely
separated from risk attitudes. Loosely speaking, we say that a decision maker
b is more imprecision averse than a decision maker a if whenever a prefers
to bet on an event when the information is given by a (precise) probability
distribution rather than some imprecise information, b prefers the bet with
the precise information as well. This notion captures in rather natural terms
a preference for precise information, which does not require the two decision
makers that are compared to have the same risk attitudes. Our result states
that two decision makers can be compared according to that notion if and
only if the selected probability-possibility set of one of them is included in the
other’s.

In our representation theorem, we use Gilboa and Schmeidler’s axiom of un-
certainty aversion which states that mixing two indifferent acts can be strictly
preferred to any of these acts, for hedging reasons. We can however provide
a more direct way of modeling the decision maker’s attitude toward impre-
cision, which also provides an easy way of experimentally testing the axiom.
We show in particular that uncertainty aversion is implied by an axiom of
aversion toward imprecision which compares the same act under two different
probability-possibility sets. Aversion toward imprecision states, loosely speak-
ing, that the decision maker always prefers to act in a setting in which he
possesses more information, i.e., the decision maker is averse toward a “gar-
bling” of the available information. At this stage, we simply remark that the
notion we adopt of what it means for a probability-possibility set to be more
imprecise than another one is rather weak and partial in the sense that it does
not enable one to compare many sets (this will be discussed in Section 3.) One
of the advantages of our setting is that it allows a clean separation between
imprecision neutrality and the absence of imprecision. The latter is a feature
of the information the decision maker possesses, while imprecision neutrality
is characterized by the fact that the decision maker’s selected probability-
possibility set is reduced to a singleton.

The next step in the paper is to provide a more specific functional form.
This is done under extra axioms that capture some invariance properties,
which will be discussed in Section 4. The selected probability-possibility set is
obtained by (i) solving for the “mean value” of the probability-possibility set,
and (ii) shrinking the set toward its mean value according to a degree given
by preference. The mean value is the Steiner point of the set (see Schneider
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(1993)). For cores of belief functions for instance, it coincides with the Shapley
value of the belief function. Denoting s(P ) the Steiner point of P , we obtain
that ϕ(P ) = (1− ε){s(P )}+ εP and hence (P, f) is preferred to (Q, g) if and
only if

εmin
p∈P

∫
u◦fdp+(1− ε)

∫
u◦fds(P ) ≥ εmin

p∈Q

∫
u◦ gdp+(1− ε)

∫
u◦ gds(Q).

This functional form, already suggested in Ellsberg (1961), consists of taking
the convex combination of two quantities: first, the minimum expected utility
with respect to all the probability-possibility set and, second, the expected
utility with respect to a particular probability distribution in this set. The
parameter ε is obtained as part of the representation result and can be inter-
preted as a degree of imprecision aversion. When ε = 0, we obtain expected
utility. When ε = 1 the functional form expresses the extreme case where
the decision maker takes the worst case scenario in the entire probability-
possibility set.

A portfolio choice example illustrates the mechanics of the model. In partic-
ular, it shows how the distinction between imprecision and attitude toward
imprecision can give rise to different comparative statics exercises.

Relationship with the literature

Our model incorporates information as an object on which the decision maker
has well defined preferences. To the best of our knowledge, Jaffray (1989) is the
first to axiomatize a decision criterion that takes into account “objective infor-
mation” in a setting that is more general than risk. In his model, preferences
are defined over belief functions. The criterion he axiomatizes is a weighted
sum of the minimum and of the maximum expected utility. This criterion
prevents a decision maker from behaving as an expected utility maximizer,
contrary to ours, which obtains as a limit case the expected utility criterion.
Interest in this approach has been renewed recently, in a series of papers that
have in common that objects of choice are sets of lotteries. Olszewski (2007)
also characterizes a version of the α-maxmin expected utility in which the de-
cision maker puts weights both on the best-case and the worst-case scenarios.
Stinchcombe (2003) characterizes a general class of expected utility for sets of
lotteries. Ahn (2005) also studies preferences over sets of lotteries, and char-
acterizes a conditional subjective expected utility in which the decision maker
has a prior probability over lotteries and updates it according to each objec-
tive set. A limitation of his analysis is that the sets of probabilities considered
are “regular”, i.e., have the same dimension as the simplex on the space of
outcome.
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Notice that our model does not reduce to one of choice over sets of lotteries
(for more on this, see the end of Section 3). Consider for instance a decision
maker who is asked whether he prefers betting on drawing a black ball in an
urn filled with 100 balls that could be black or white in unknown proportion
on the one hand or betting on drawing a red ball in an urn filled with 100 balls
that could be yellow, blue, green, or red in unknown proportion. Nothing in
our framework imposes that the decision maker is indifferent between these
two bets. Such an indifference would follow if we were to impose that the
decision makers only takes into account the induced distributions on outcomes
when evaluating a pair (information,act). In this case, our framework would
be comparable with, say, Olszewski (2007). Our criterion would then reduce
to maxmin expected utility over the set of lotteries as we retain an axiom of
uncertainty aversion. 3

Viero (2007) derives a representation of preferences for a choice theory where
the agent does not know the precise probability distributions over outcomes
conditional on states. Instead, he knows only a possible set of these distri-
butions for each state, thus generalizing the usual Anscombe and Aumann
(1963) setting . The criterion obtained, called Optimism-Weighted Subjective
Expected Utility takes in each state a weighted average of expected utility of
the best and worst lottery and aggregate these numbers through an expecta-
tion over the states. The beliefs over the states are subjective.

Wang (2003) is closely related to our analysis. In his approach the available
information is also explicitly incorporated in the decision model. Information
takes the form of a set of probability distributions together with an anchor, i.e.,
a probability distribution that has particular salience. As in our analysis, he
assumes that decision makers have preferences over couples (information,act).
However, his axiom of ambiguity aversion is much stronger than ours and
forces the decision maker to be a maximizer of the minimum expected utility
taken over the entire information set. There is no scope in his model for less
extreme attitude toward ambiguity. Following Wang’s approach, Gajdos et al.
(2004) proposed a weaker version of aversion toward imprecision still assuming
that information was coming as a set of distributions together with an anchor.
The notion of aversion toward imprecision developed in Section 3 is based on
the one analyzed in Gajdos et al. (2004).

The notion of comparative imprecision aversion could itself be compared to
the one found in Epstein (1999) and Ghirardato and Marinacci (2002). The
latter define comparative ambiguity aversion using constant acts. They there-
fore need to control for risk attitudes in a separate manner and in the end,
can compare (with respect to their ambiguity attitudes) only decision makers

3 Olszewski (2007) uses instead an axiom of Set Betweenness, which is in general
not satisfied by our criterion.
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that have the same utility functions. 4 Epstein (1999) uses in place of our bets
in the definition of comparative uncertainty aversion, acts that are measur-
able with respect to an exogenously defined set of unambiguous events. As
a consequence, in order to be compared, preferences of two decision makers
have to coincide on the set of unambiguous events. If the latter is rich enough,
utility functions then coincide. Our notion of comparative imprecision aver-
sion, based on the comparison of bets under precise and imprecise information
does not require utility functions to be the same when comparing two decision
makers. Said differently, risk attitudes are simply irrelevant to the imprecision
aversion comparison.

The functional form axiomatized in Section 4 appears in some previous work
(Gajdos et al. (2004) and Tapking (2004)), based on a rather different set of
axioms and in a more limited setting. Kopylov (2006) also axiomatizes this
functional form, for a fixed information-possibility set. In a setting similar to
ours, Giraud (2006) axiomatizes a model in which the decision maker has non
additive second order beliefs.

Klibanoff et al. (2005) provide a fully subjective model of ambiguity aversion,
in which attitude toward ambiguity is captured by a smooth function over
the expected utilities associated with a set of priors. The latter, as in Gilboa
and Schmeidler (1989) is subjective. Hence, although their model allows for a
flexible and explicit modeling of ambiguity attitudes, there is no link between
the set of priors and the available information. Interestingly, part of Klibanoff
et al. (2005)’s motivation is similar to ours, that is disentangling ambiguity
attitude from the information the decision maker has. Formally, however, this
separation holds in their model only if one makes the extra assumption that
revealed beliefs coincide with the objective information available. In particular,
comparative statics are more transparent in our model, as information can be
exogenously changed.

Lehrer (2007) also provides an “information-based” model. He axiomatizes
particular cases of the Choquet expected utility model and the multiple prior
model in which revealed beliefs have the form of partially-specified probabili-
ties (i.e., the decision maker “knows” the probability of some, though not all,
events or the expectation of some, though not all, of the random variables.)
His construction is entirely subjective: it does give some structure to the set
of revealed beliefs but the link with prior information is not made explicit.

4 They actually mention that if one wants to compare two decision makers with
different utility functions, one has first to completely elicit them.
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2 Extended multiple-priors model

We start with a benchmark model that extends the multiple-priors model by
Gilboa and Schmeidler (1989) into the variable information setting.

2.1 Representation theorem

2.1.1 Set up

Let Ω = N be the countable set of all the potential states of the world. 5 Let S
be the family of nonempty and finite subsets of Ω. For each S ∈ S, denote the
set of probability measures over S by ∆(S). Let P(S) be the family of compact
and convex subsets of ∆(S), where compactness is defined with regard to the
Euclidian space RS. Let P be the family of probability-possibility sets, that is
defined by P =

⋃
S∈S P(S). For each P ∈ P , its support is denoted by supp(P )

and is equal to the union over p ∈ P of the support of p. 6

The space of probability-possibility sets P is a mixture space under the oper-
ation defined by

λP + (1− λ)Q = {λp+ (1− λ)q : p ∈ P, q ∈ Q}.

The set of pure outcomes is denoted by X. Let ∆∗(X) be the set of simple
lotteries (probability measures with finite supports) over X. Let F = {f :
Ω → ∆∗(X)} be the set of lottery acts. Without loss, any lottery is viewed as
a constant act which delivers that lottery regardless of the states.

The domain of objects of choice is P×F . The decision maker has a preference
relation over P × F , which is denoted by %. The decision maker compares
pairs of probability-possibility sets and acts. When

(P, f) % (Q, g),

the decision maker prefers choosing f under P to choosing g under Q. When
Q = P , the preference relation represents the ranking of acts given the in-
formation embodied by P . When g = f , the preference relation represents

5 We assume that the state space is countably infinite. This assumption is not
needed for Theorems 1, 2, 3, and 6 which remain true in a finite setting. We use
it to prove Theorems 4, 5, 7, and 8. As we explain there, we could actually do the
analysis in a finite setting, at the cost of cumbersome notation, and chose rather to
use the modeling device of an infinite state space.
6 For the sake of notational simplicity, we will consider that all probability distri-
butions are defined over Ω and that p(ω) = 0 ∀ω ∈ Ω \ supp(p).

8



the ranking of probability-possibility sets given the action embodied by f . For
E ∈ S, denote fEg the act that yields f(ω) if ω ∈ E and g(ω) if not.

2.1.2 Discussion

The object of choice should be understood in the following manner. Consider
Ellsberg’s two urns example. In the first urn, there are 50 red and 50 blue
balls. In the second urn, there are 100 yellow and green balls in unknown
proportion. Two representations are possible. The first one is to construct
the “grand state space” with four states according to which color is drawn
and construct the probability-possibility set on these four states. The second,
which we adopt in the paper, is to consider two different “situations” (known
urn or unknown urn), each one with its probability-possibility set. In each
situation, the decision maker can take a decision, which is represented by a
mapping from some set of integers (that encode the situation) to a space of
outcome. One can then compare betting in one situation versus betting in the
other situation.

This example enlightens a few things. First, information is given at the outset.
The decision maker can choose to act in a situation in which there is more (or
less) information but cannot modify the information. Second, information is
not contradictory among two situations. It simply bears on different objects.
Since each set bears on a different part of the uncertainty, it does not make
sense to take the intersection of these sets. Third, the labeling of “states”
within each situation is arbitrary and is a mere encoding: hence one can name
in the same way two acts that actually represent quite distinct choices. Betting
on red or betting on yellow in the example above can be represented by a
couple (1, 0) in each situation and be given the label “f”. The preference
({1/2, 1/2}, f) � (∆({1, 2}), f) represents the fact that the decision maker
prefers to bet in a known urn rather than in an urn whose composition is
unknown.

This introduces in the model some invariance properties, since “states” are
not really meaningful and are simply represented by some integers: we as-
sume that the decision maker is only sensitive to the information he has on
the states and not to the manner states are encoded. Hence, in the Ellsberg
urn, ({1/2, 1/2}, f) has to be indifferent to ({1/2, 1/2}, g) where g = (0, 1).
Similarly, (∆({1, 2}), f) has to be indifferent to (∆({1, 2}), g).

Consider finally a decision maker who chooses according to the induced set
of distributions on outcome, as in Olszewski (2007). In this case, an act f =
(1, 0, 0, . . . ) would be evaluated in the same way whether the information is
∆({1, 2}) or ∆({1, 2, 3}): (∆({1, 2}), f) ∼ (∆({1, 2, 3}), f). Our model does
not force this equivalence.
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2.1.3 Axioms

We now introduce the axioms. The first two axioms are quite standard.

Axiom 1 (Order) The preference relation % is complete and transitive.

Axiom 2 (Act Continuity) For every P ∈ P and f, g, h ∈ F , if (P, f) �
(P, g) � (P, h), then there exist α and β in (0, 1) such that

(P, αf + (1− α)h) � (P, g) � (P, βf + (1− β)h).

The third axiom states that the preference over lotteries is independent of
information sets and is nondegenerate. When a lottery is given regardless of
the states of the world, information about their likelihood is irrelevant. Also,
we exclude the case in which the decision maker is indifferent between all
lotteries.

Axiom 3 (Outcome Preference) (i) For every P,Q ∈ P and l ∈ ∆∗(X),
(P, l) ∼ (Q, l), (ii) there exist P ∈ P and l,m ∈ ∆∗(X) such that (P, l) �
(P,m).

The following three axioms are parallel to those in Gilboa and Schmeidler
(1989).

Axiom 4 (c-Independence) For every f, g ∈ F , l ∈ ∆∗(X), λ ∈ (0, 1) and
P ∈ P,

(P, f) % (P, g) =⇒ (P, λf + (1− λ)l) % (P, λg + (1− λ)l).

Axiom 5 (Uncertainty aversion) For every f, g ∈ F , λ ∈ (0, 1) and P ∈ P,

(P, f) ∼ (P, g) =⇒ (P, λf + (1− λ)g) % (P, f).

Axiom 6 (Monotonicity) For every f, g ∈ F and P ∈ P,

(P, f(ω)) % (P, g(ω)) ∀ω ∈ supp(P ) =⇒ (P, f) % (P, g).

2.1.4 Gilboa-Schmeidler extended

Theorem 1 The preference relation % satisfies Axioms 1 to 6 if and only if
there exist a function U : P × F → R which represents %, a mixture-linear
function u : ∆(X) → R and a mapping ϕ : P → P such that

U(P, f) = min
p∈ϕ(P )

∑
ω∈Ω

u(f(ω)) p(ω).
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Moreover, u is unique up to positive linear transformations and ϕ is unique
and has the property supp(ϕ(P )) ⊂ supp(P ).

We purposely kept as close as possible to the original axioms of Gilboa and
Schmeidler (1989). In particular, we kept their two key axioms (c-Independence)
and (Uncertainty Aversion). We will argue later that the latter can be replaced
by a more explicit representation of the agent’s attitude toward imprecision
of the available information.

At this stage, the only property of ϕ is that supp(ϕ(P )) ⊂ supp(P ), meaning
that the decision maker considers the information represented by P to be
credible in the sense that states that are not given any weight by any of the
relevant probability distributions are simply irrelevant. Note that this implies
that the support of ϕ(P ) is finite.

2.2 The link between P and ϕ(P )

In our setup ϕ(P ) embodies attitude toward uncertainty as well as the pro-
cessing of some given information. Call it the selected probability-possibility
set. Our approach is meant to shed some light as to what is behind this set.
In the representation theorem above, P is objective information, while the
function ϕ is subjective in the same way the utility function u is. We can
however specify further the property of ϕ that will constrain the link between
the selected probability-possibility set and the initial probability-possibility
set. This link is left rather unclear in Theorem 1.

For probability {p} ∈ P and act f ∈ F , define the induced distribution over
outcomes by

l(p, f) =
∑
ω∈Ω

p(ω)f(ω).

The next axiom states that the evaluation of an act under precise information
–that is, when the probability-possibility set is given as a singleton– depends
only on its induced distribution.

Axiom 7 (Reduction under Precise Information) For every {p} ∈ P and
f ∈ F ,

({p}, f) ∼ ({p}, l(p, f)).

If one adds this axiom to the ones in Theorem 1, ϕ has the further property
that ϕ({p}) = {p} for all {p} ∈ P . Thus, when told a precise probabilistic
information the decision maker is a vNM decision maker.

The next axiom states that if one act is preferable to another under every
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element of the information set, the ranking is unchanged under the whole set.

Axiom 8 (Dominance) For every f, g ∈ F and P ∈ P,

({p}, f) % ({p}, g) for every p ∈ P =⇒ (P, f) % (P, g).

Another way to interpret the axiom is by saying that if (P, g) � (P, f), then it
has to be the case that there is some (precise) information in P under which g
is preferred to f . Thus, the decision maker does not contemplate information
outside of the set P as relevant for comparing the two acts.

If one adds (Dominance) to Axioms 1 to 6, then Theorem 1 holds with the
property that ϕ(P ) ⊂ co (∪p∈Pϕ({p})).

The following theorem combines these axioms and provides a stronger condi-
tion on ϕ. 7

Theorem 2 The preference relation % satisfies Axioms 1 to 5, 7 and 8 if
and only if there exist a function U : P × F → R which represents %, a
mixture-linear function u : ∆(X) → R and a mapping ϕ : P → P such that

U(P, f) = min
p∈ϕ(P )

∑
ω∈Ω

u(f(ω)) p(ω).

Moreover, u is unique up to positive linear transformations and ϕ is unique,
has the property

(Selection): ϕ(P ) ⊂ P for every P ∈ P.

Hence, when one combines (Reduction under Precise Information) and (Dom-
inance), one gets that ϕ(P ) is a selection from P ( thus explaining the termi-
nology adopted of “selected probability-possibility set”.) If P is a singleton,
then the constraint imposed by the (Selection) property rules out any sub-
jectivity in the selected probability-possibility set of the agent, which has to
coincide with the given singleton.

Theorem 2 is not very specific as to which form ϕ could take. The first example
that comes to mind is when ϕ is the identity mapping: ϕ(P ) = P . A second
example, that will be developed in Section 6 is to consider ϕ(P ) = (1−ε)e(P )+
ε P where e(.) is a mapping from P to P with the property that e(P ) is a
singleton included in P , which gives the “reference distribution” for each set
P . It corresponds to what is known in the literature as the ε-contamination
case. Another class of examples is to take ϕ(P ) to be the set of maximizers

7 Introducing Axioms 7 and 8 entail some redundancies : under Axioms 1 to 4,
(Reduction under Precise Information) and (Dominance) imply (Monotonicity).
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(or minimizers) of some function: ϕ(P ) = argmaxp∈PF (p). One can consider
for instance entropy, where F (p) = −∑ω∈supp(p) p(ω) log2(p(ω)).

In some applications, it is not farfetched to assume that there is a salient
probability distribution in the set P . In that case, F (p) could be taken to
be the relative entropy (see Maccheroni et al. (2006)) with respect to that
distribution. Such types of selection might be useful in some contexts, and
they are allowed by our general theorem.

2.3 Comparative imprecision aversion

Say that a decision maker b is more averse toward imprecision than a decision
maker a if whenever he prefers an act under a singleton probability-possibility
set over the same act under a general probability-possibility set, so does a.
Furthermore, one would like to separate out this attitude toward imprecision
from the traditional attitude toward risk. In order to do that, one has to define
carefully the set of acts for which the definition applies. For two prizes x, y ∈ X
and an event E denote xEy the act giving the degenerate lottery yielding x
for sure when event E realizes and the degenerate lottery yielding y for sure
if E does not realize. Such an act will be called a bet in the following.

Definition 1 Let %a and %b be two preference relations defined on P × F .
Suppose there exist two prizes, x̄ and x in X such that both a and b strictly
prefer x̄ to x. We say that %b is more averse to bet imprecision than %a if
for all E ∈ S, P ∈ P, and {p} ∈ P,

({p}, x̄Ex) %a [�a](P, x̄Ex) ⇒ ({p}, x̄Ex) %b [�b](P, x̄Ex)

Theorem 3 Let %a and %b be two preference relations defined on P × F
satisfying Axioms 1 to 7. Then, the following assertions are equivalent:

(i) %b is more averse to bet imprecision than %a,

(ii) for all P ∈ P,{
q ∈ P |∀E ⊂ supp(P ), q(E) ≥ min

p∈ϕa(P )
p(E)

}
⊂
{
q ∈ P |∀E ⊂ supp(P ), q(E) ≥ min

p∈ϕb(P )
p(E)

}
.

Thus, the core of the “smallest” (convex) capacity that contains ϕa(P ) is in-
cluded in the core of the “smallest” (convex) capacity that contains ϕb(P ). 8

8 ν(E) = min
p∈ϕa(P )

p(E) defines a capacity, that is, a set function from the set of all

subsets of supp(P ) to [0, 1], which is monotone with respect to set inclusion. This
capacity has the property of being a belief function (see Chateauneuf and Jaffray

13



Theorem 4 below provides a stronger characterization of comparative impre-
cision aversion (in terms of set inclusion of the selected probability possibility
sets) that comes at the cost of imposing a stronger invariance property.

This notion of comparative aversion to imprecision ranks preferences that
do not necessarily have the same attitudes toward risk. This is of particu-
lar interest in applications if one wants to study the effects of risk aversion
and imprecision aversion separately. For instance, one might want to compare
portfolio choices of two agents, one being less risk averse but more imprecision
averse than the other. This type of comparison cannot be done if imprecision
attitudes can be compared only among preferences that have the same risk
attitude, represented by the utility function. To the best of our knowledge,
there is no available result in the literature that achieves this separation.

In our model, decision makers are von Neumann-Morgenstern under precise
information, so that aversion toward risk is captured by the concavity of the
utility index. Now, one could imagine that decision makers could distort prob-
abilities as in rank dependent expected utility. We conjecture that Theorem
3 would remain valid in this more general setting, as the definition of com-
parative imprecision aversion amounts only to compare the probability of the
good event, a comparison that should not be affected by increasing distortion
function.

3 Imprecision aversion

In this Section, we propose a definition of an (incomplete) order on sets of
distributions that could arguably be appropriate to model imprecision of a set
of distributions and show that this notion is behind Gilboa and Schmeidler’s
definition of uncertainty aversion. But before dealing with this issue, we need
to introduce an axiom that links the usual notion of mixture with information
possibility sets that have a particular structure.

3.1 Preliminaries: mixing

Take the usual notion of mixing, that is at the heart of Gilboa and Schmeidler’s
approach to uncertainty aversion: αf + (1 − α)g is the act that yields the
lottery αf(ω) + (1−α)g(ω) in state ω. To the extent that mixing acts is seen
as being equivalent to tossing a coin, we can express an idea similar to mixing
by playing on the information structure rather than on the acts.

(1989) for instance).
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Take the following example: consider the set of distributions given by

Q = {(αp, (1− α)p, α(1− p), (1− α)(1− p))|p ∈ [0, 1]}

where α is some number in (0, 1). This set has the particular feature that

for any q ∈ Q, q(1)
q(2)

= α
1−α

= q(3)
q(4)

. To pursue, consider now an act h to-

gether with Q. Axiom 9 below assimilates (Q, h) with the following mixture:
(∆({1, 2}), αf + (1 − α)g) where f(1) = h(1), g(1) = h(2), f(2) = h(3),
g(2) = h(4). This new pair represents a situation in which, when state 1 oc-
curs –which happens with any probability p ∈ [0, 1]– the decision maker is
faced with the lottery αh(1) + (1 − α)h(2). In state 2, he is faced with the
lottery αh(3) + (1 − α)h(4). Note again that in this operation, the relative
probability of being faced with h(1) compared to h(2) is given by α

1−α
.

More generally, an information/act pair (P, αf + (1−α)g) can be interpreted
by saying that a state ω is determined, according to some unknown prob-
ability p(ω) that belongs to P . Then, once the state is realized, a roulette
lottery or a coin flip takes place with odds α : (1 − α). As illustrated in
Figure 1, (Q, h) where h(ω) = f(ω+1

2
) if ω is odd, and h(ω) = g(ω

2
) if ω

is even while Q = {q|∃p ∈ P s.th. q(ω) = αp(ω+1
2

) if ω is odd and q(ω) =
(1 − α)p(ω

2
) if ω is even} can then be seen as the result of “collapsing” the

roulette lottery in the probability distribution that determines the state. Said
differently, the state now incorporates whether the coin toss ended heads or
tails. Each state is now split in two: state ω is split into (state ω, heads) and
(state ω, tails) and, conditionally on being in state ω, there is a given proba-
bility distribution that is fixed across states, according to which heads or tails
is determined. The next axiom states that the decision maker sees the two
objects as the same. Thus, the axiom says, the operation described above is
neutral for the decision maker as it does not modify the timing of the process:
uncertainty first and then risk. In spirit, this axiom is very similar to the usual
reduction of compound lottery axiom. 9

Axiom 9 (Decomposition Indifference) Let f, g, h ∈ F and P,Q ∈ P. If

• h(ω) = f(ω+1
2

) if ω is odd, and h(ω) = g(ω
2
) if ω is even and,

9 In this axiom we need the state space to be infinite, although we could develop a
model with a finite state space, in which a randomizing device would be explicitly
part of the probability-possibility set. In that case, we would assume a finite state
space S and append to it {0, 1}#S , representing independent objective randomizing
devices. We would then consider only sets of distributions on this product space
that have a specific structure, i.e., the product of a set of distributions on S and of
independent distributions on {0, 1}. Some invariance properties would have to be
assumed and Axiom 9 rewritten. Hence, although not necessary, assuming that the
state space is infinite is, in our view, more convenient.
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pi

pj

qi

qj

∼

qi(ω̃1) = αpi(ω1)

qi(ω̃2) = (1− α)pi(ω1)

qi(ω̃2n−1) = αpi(ωn)

qi(ω̃2n) = (1− α)pi(ωn)

f(ω1)

g(ω1)

f(ωn)

g(ωn)

qj(ω̃1) = αpj(ω1)

qj(ω̃2) = (1− α)pj(ω1)

qj(ω̃2n) = (1− α)pj(ωn)

f(ω1)

g(ω1)

f(ωn)

g(ωn)

qj(ω̃2n−1) = αpj(ωn)

(f(ω1), α; g(ω1), 1− α)

(f(ωn), α; g(ωn), 1− α)
pj(ωn)

pj(ω1)

pi(ω1)

pi(ωn) (f(ωn), α; g(ωn), 1− α)

(f(ω1), α; g(ω1), 1− α)

·

···
··
·

·
· ···

Fig. 1. Decomposition Indifference

• Q = {q|∃p ∈ P s.th. q(ω) = αp(ω+1
2

) if ω is odd and q(ω) = (1−α)p(ω
2
) if ω is even}

for some α ∈ [0, 1]

then (P, αf + (1− α)g) ∼ (Q, h).

The information embedded in the set Q is viewed as being equivalent to the
information provided by the mixture operation. It expresses the fact that states
should here be viewed as a mere encoding device. (Decomposition Indifference)
implies some further properties of the selection function ϕ.

Proposition 1 Let % satisfies Axioms 1 to 6. Then, the following two asser-
tions are equivalent:

(i) Axiom 9 holds,

(ii) the mapping ϕ : P → P in Theorem 1 has the property that

ϕ(Q) = {q|∃p ∈ ϕ(P ) s.th. q(ω) = αp
(
ω + 1

2

)
ω odd , q(ω) = (1−α)p

(
ω

2

)
ω even}

(1)
∀P,Q ∈ P, such that Q = {q|∃p ∈ P s.th. q(ω) = αp(ω+1

2
) if ω is odd and q(ω) =

(1− α)p(ω
2
) if ω is even} for some α ∈ (0, 1).
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Example 1 Assume that ϕ(P ) is the maximum entropy of P . Given that

minp∈argmax{−
∑

ω
p(ω) log2 p(ω)}

∑
ω p(ω)[αf(ω) + (1− α)g(ω)]

=

minp∈R

[∑
ω odd p(

ω+1
2

)f(ω+1
2

) +
∑

ω even p(ω
2
)g(ω

2
)
]

where R = argmax{−∑ω odd αp(
ω+1

2
) log2 αp(

ω+1
2

)−∑ω even (1−α)p(ω
2
) log2(1−

α)p(ω
2
)}, Axiom 9 is satisfied for this particular case.♦

Example 2 Axiom 9 (and as a consequence Property (1) in Proposition (1))
will not be satisfied if, for instance ϕ(P ) = argminp∈P

∑
ω(p(ω) − p̄(ω))2 or

ϕ(P ) = {p ∈ P |d(p)−d(p̄) ≤ ζ} where p̄ is some given probability distribution,
d some distance function and ζ a positive number. This is because keeping p̄
fix while “spreading” the p’s affects the distance between these objects. ♦

Property (1) of the selection function will be used in all the results of this
section.

3.2 Imprecision aversion

We first provide a characterization of comparative bet imprecision aversion
under Axiom 9, which gives a tighter result than Theorem 3.

Theorem 4 Let %a and %b be two preference relations defined on P × F
satisfying Axioms 1 to 7, and Axiom 9. Then, the following assertions are
equivalent:

(i) %b is more averse to bet imprecision than %a,

(ii) for all P ∈ P, ϕa(P ) ⊂ ϕb(P ).

We now give a new foundation for the uncertainty aversion axiom, showing
that it is implied by an axiom of aversion toward imprecision. The latter com-
pares an act under two different probability-possibility settings and states that
the decision maker always prefers the more precise information. We therefore
have to define a notion of imprecision on sets of probability distributions. The
most natural definition would be that P is more precise than Q whenever
P ⊂ Q. This is actually the definition proposed by Wang (2003). However,
this definition turns out to be much too strong. Indeed, the idea behind the
notion of aversion toward imprecision is that an imprecision averse decision
maker should always prefer a more precise information, whatever the act under
consideration. Consider an act f for which the worst outcome is obtained, say,
in state 1. Then, Wang’s notion of precision would force the decision maker
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to prefer ({(1, 0)}, f), that is, putting probability one on the worst outcome
to (∆({1, 2}), f), that is, being totally uncertain about the state; a feature of
the axiom which is very unlikely and unappealing.

On the other hand, it is clear that a set being more precise than another has
something to do with set inclusion. The following definition restricts the in-
clusion condition to some sets of probability distributions that are comparable
in some sense, exactly as the comparison of two distributions in terms of risk
focusses on distributions that have the same mean.

Definition 2 Let P,Q ∈ P. Say that P is conditionally more precise than Q
if

• P ⊂ Q and,
• there exists a partition (E1, . . . , En) of Ω such that
(i) ∀p ∈ P , ∀q ∈ Q, p(Ei) = q(Ei) for all i = 1, . . . , n,
(ii) co{p(.|Ei); p ∈ P} = co{q(.|Ei); q ∈ Q} for all i such that Ei ∈ supp(Q).

Note that this notion is very weak in the sense that it is very incomplete.
For instance, an n-dimensional simplex cannot be compared through this def-
inition with any of its subsets. Indeed, two sets P and Q, ordered by set
inclusion, can be compared only if there exists a partition of the state space
on which they agree and have precise probabilities (item (i) of the definition),
and furthermore, conditionally on each cell of this partition, they give the
same information (item (ii) of the definition). This means that the extra in-
formation contained in P is about some correlation between what happens in
one cell Ei with what happens in another cell Ej. Said differently, the extra
information is orthogonal to the “initial” probabilistic information, reflected
in the fact that the cells of the partition have precise probabilities attached
to them. The way this is expressed is via conditional probabilities: however,
it should be underlined that these are simply a means to express properties
of the probability-possibility sets that are compared. The use of conditional
probabilities in this definition is not linked to any subjective assessment of the
decision maker. Theorem 5 below provides the link between attitude toward
this type of information and attitude toward hedging via mixing which is the
basis for Gilboa and Schmeidler’s Uncertainty Aversion axiom.

Example 3 Consider the family

Pα =
{(
p,

1

2
− p, q,

1

2
− q

)
|p ∈

[
0,

1

2

]
, q ∈

[
0,

1

2

]
, |q − p| ≤ α

}

where α ∈ [0, 1
2
]. One obviously has Pα ⊂ Pα′ for all α′ ≥ α. Now fix α < 1

2
and

let Q ≡ P1/2. {{1, 2}, {3, 4}, {5, . . . }} is a partition of the state space such that
∀p ∈ Pα, ∀q ∈ Q, p(Ei) = q(Ei). The set of probabilities conditional on {1, 2}
is the same when computed starting from Pα and from Q. The same is true for
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conditionals with respect to {3, 4}. Thus, Pα is conditionally more precise than
Q. The nature of the extra information that is present in Pα is maybe clearest
for α = 0. In that case, one has q = p and the extra information that is present
in P0 is a strong correlation between the different cells of the partition. More
generally, we can look at upper and lower probabilities for events according to
Pα and Q. We know they agree on the partition {{1, 2}, {3, 4}, {5, . . . }}. One
can also check that the upper and lower probabilities on the events {1, 3} and
{2, 4} are the same for the two sets (0 and 1 respectively). However, the lower
and upper probability of events {2, 3} and {1, 4} do differ for the two sets.
One has, with obvious notation, p

α
({2, 3}) = 1/2−α and p̄α({2, 3}) = 1/2+α

while q({2, 3}) = 0 and q̄({2, 3}) = 1, and similarly for event {1, 4}. The fact
that p

α
> q and p̄α < q̄, is another way to see that Pα is more precise than

Q.♦

We can now state our axiom.

Axiom 10 (Aversion toward Imprecision) Let P,Q ∈ P be such that P is
conditionally more precise than Q, then for all f ∈ F , (P, f) % (Q, f).

Remark 1 Assume Theorem 1 and (Aversion toward Imprecision) hold. Then,
for any P,Q ∈ P such that P is conditionally more precise than Q, ϕ(P ) ⊆
ϕ(Q).

For the following theorem, we need a weak form of information independence
(a stronger form will be introduced and discussed in the next Section.)

Axiom 11 (Weak Information Independence) For every P,Q ∈ P, f ∈ F ,
and λ ∈ (0, 1),

(P, f) ∼ (Q, f) =⇒ (λP + (1− λ)Q, f) ∼ (P, f).

Theorem 5 Suppose the Axioms (1), (9) and (11) hold. Then Axiom (10)
implies Axiom (5).

Thus, through this theorem, we identify characteristics of the objective infor-
mation that the decision maker dislikes when he prefers the mixture of two
indifferent acts to either act. The following example shows that equivalence
does not hold in the previous theorem.

Example 4 Let α ∈ (0, 1) and consider

Q = {(αp, (1− α)p, α(1− p), (1− α)(1− p)); p ∈ [0, 1]}

and

Q′ = {(αp, (1− α)q, α(1− p), (1− α)(1− q)); p, q ∈ [0, 1]} = α∆({1, 3})+(1−α)∆({2, 4})
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and let U(P, f) = minp∈ϕ(P )
∑

ω∈Ω u(f(ω)) p(ω). By construction, this satisfies
(Uncertainty Aversion). Furthermore, it can be checked that Q is conditionally
more precise than Q′. Hence, if ϕ(Q) is not included in ϕ(Q′), (Aversion
toward Imprecision) is violated.

By (Decomposition Indifference) and Proposition 1,

ϕ(Q) = {(αp, (1− α)p, α(1− p), (1− α)(1− p)); (p, 1− p) ∈ ϕ(∆({1, 2}))}

Assuming (with slight abuse of notation) ϕ(∆({1, 3})) = (1
2
, 0, 1

2
, 0) and ϕ(∆({2, 4})) =

(0, 1
2
, 0, 1

2
), one gets by (Weak Independence) that ϕ(Q′) = (α1

2
, (1−α)1

2
, α1

2
, (1−

α)1
2
). Assuming ϕ(∆({1, 2})) = ∆({1, 2} yields the violation of (Aversion to-

ward Imprecision). ♦

3.3 On sets of lotteries

Olszewski (2007) considers a setting in which the objects of choice are sets of
lotteries and derives an α-maxmin representation: a set is evaluated by the
weighted average of the expected utilities of the best and the worst lottery in
the set, with the weights interpreted as a measure of (comparative) attitude
to objective ambiguity.

A particular case of our model is when the decision maker evaluates a pair
(P, f) by the set of its induced distributions on outcomes. Take outcomes to
be real numbers and consider f = (1, 0, 0, . . . ). Then, since the distributions
on outcomes induced by (∆({1, 2}), f) and (∆({1, 2, 3}), f) are the same, such
a decision maker must satisfy (∆({1, 2}), f) ∼ (∆({1, 2, 3}), f).

This indifference, in and by itself, rules out, in our model, the possibility for the
decision maker to be imprecision neutral. 10 Indeed, an imprecision neutral de-
cision maker would satisfy (∆({1, 2}), f) ∼ ({(1

2
, 1

2
)}, f) and (∆({1, 2, 3}), f) ∼

({(1
3
, 1

3
, 1

3
)}, f). But since ({(1

2
, 1

2
)}, f) � ({(1

3
, 1

3
, 1

3
)}, f), this yields a contra-

diction to (∆({1, 2, 3}), f) ∼ ({(1
3
, 1

3
, 1

3
)}, f).

Actually, when evaluating a pair (P, f) through the induced set of distributions
on outcomes, our model yields maxmin expected utility with respect to the set
of lotteries itself. More precisely, ϕ(P ) = P in this case. This can be seen on the
previous example. Say that U(∆({1, 2, 3}), (1, 0, 0, 0, . . . )) = au(1)+(1−a)u(0)
and normalize u(1) = 1 and u(0) = 0. This means that ∀p ∈ ϕ(∆({1, 2, 3})),
p(1) ≥ a and there exists p̄ ∈ ϕ(∆({1, 2, 3})), such that p̄(1) = a. Since

(∆({1, 2, 3}), (1, 0, 0, 0, . . . )) ∼ (∆({1, 2, 3}), (0, 1, 0, 0, . . . )) ∼ (∆({1, 2, 3}), (1, 1, 0, 0 . . . )),

10 Imprecision neutrality is naturally defined by replacing % by ∼ in Axiom 10.
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we get first that ∀p ∈ ϕ(∆({1, 2, 3})), p(2) ≥ a, and, second, that there exists
p̄′ ∈ ϕ(∆({1, 2, 3})) such that p̄′(1)+ p̄′(2) = a. But this yields a contradiction
unless a = 0. Hence, the distribution p̄′ = (0, 0, 1, 0, . . . ) ∈ ϕ(∆({1, 2, 3})).
A similar reasoning, shows that all the extreme points of the simplex are
also in ϕ(∆({1, 2, 3})) and therefore we can conclude that ϕ(∆({1, 2, 3})) =
∆({1, 2, 3}).

Hence, adopting a framework in which the decision maker reduces (P, f) to
its set of induced distribution prevents modeling a decision maker that would
behave as an expected utility maximizer. This is actually also true in Olszewski
(2007): with the α-maxmin functional he axiomatizes, one has U(P, f) =
αmaxp∈P Ep[u ◦ f ] + (1−α) minp∈P Ep[u ◦ f ]. Hence, it is not possible to have
that (∆({1, 2}), f) ∼ ({(1

2
, 1

2
)}, f) and (∆({1, 2, 3}), f) ∼ ({(1

3
, 1

3
, 1

3
)}, f): the

first indifference would require α = 1
2

while the second would require α = 1
3
.

4 Contraction representation: Axiomatic foundation

In this Section we provide an axiomatic characterization of the contraction
representation, i.e., ϕ(P ) = (1− ε)s(P ) + εP , where s(P ) is the Steiner point
of P . The contraction representation is characterized by three additional ax-
ioms: an independence axiom on mixtures of probability-possibility sets, an
invariance axiom with regard to certain transformations of probability mea-
sures, and a stronger continuity axiom.

4.1 Information independence

We start by introducing the independence axiom. It states that the ranking
of probability-possibility sets given an act is unchanged under taking mix-
tures with a common probability-possibility set. It is a natural extension of
von-Neumann-Morgenstern’s independence axiom to the setting of imprecise
information.

Axiom 12 (Information Independence) For every P, P ′, Q ∈ P, f ∈ F , and
λ ∈ (0, 1),

(P, f) ∼ (P ′, f) =⇒ (λP + (1− λ)Q, f) ∼ (λP ′ + (1− λ)Q, f).

This axiom seems related to the c-Independence axiom. However, it might be
worth mentioning that (Information Independence) and (c-Independence) are
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orthogonal to each other. 11

Addition of (Information Independence) restricts our ϕ function to be linear
in mixtures of probability-possibility sets.

Proposition 2 The preference relation % satisfies Axioms 1 to 6, and 12 if
and only if we have the representation as in Theorem 1 with the additional
property,

(Mixture-linearity): ϕ(λP + (1 − λ)Q) = λϕ(P ) + (1 − λ)ϕ(Q) ∀P,Q ∈
P , ∀λ ∈ [0, 1].

The same claim holds for Axioms 1 to 5, 7, 8, and 12, with the further property
that ϕ(P ) ⊂ P for all P ∈ P.

4.2 Invariance and continuity

Next we introduce the invariance axiom. It roughly says that the decision
maker’s attitude toward information should not change under transforma-
tions of the state space (and probability simplex) that do not change attitude
toward any precise information. This is interpreted as a requirement for a
sophisticated attitude toward imprecise information.

First we give an informal presentation of the invariance axiom. For each S ∈ S,
let ψ : ∆(S) → ∆(S) denote a transformation on the simplex, and let ψ̃ : F →
F be the transformation of acts associated with ψ. We will consider a class of
transformations that do not change the ranking of precise information. That
is, the transformations to be considered ψ should satisfy

({p}, f) % ({q}, f) ⇒ ({ψ(p)}, ψ̃(f)) % ({ψ(q)}, ψ̃(f))

for every p, q ∈ ∆(S) and f ∈ F .

For the transformations that satisfy the above property, we will impose an
axiom in the form that for every S ∈ S, every P,Q ∈ P(S) and f ∈ F ,

(P, f) % (Q, f) ⇒ (ψ(P ), ψ̃(f)) % (ψ(Q), ψ̃(f)).

11 A version of α-maximin representation in the form

U(P, f) = α(f) max
p∈P

Ep[u ◦ f ] + (1− α(f))min
p∈P

Ep[u ◦ f ]

where α(·) is not constant in c-mixtures satisfies (Information Independence) but
violates (c-Independence). Representation as in Theorem 1 where ϕ is not mixture-
linear satisfies (c-Independence) but violates (Information Independence).
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Below we formally identify the class of transformations that is appropriate for
our argument. Here we restrict attention to a class of bistochastic matrices,
that are stochastic generalization of permutations. An |S| × |S|-matrix Π is
S-bistochastic if it is nonnegative and

∑
ω∈S Πωω′ = 1 for each ω′ ∈ S, and∑

ω′∈S Πωω′ = 1 for each ω ∈ S. For an S-bistochastic matrix Π and f ∈ F ,
define the transformed act Πf ∈ F by (Πf)(ω) =

∑
ω′∈S Πωω′f(ω′) for each

ω ∈ S, and (Πf)(ω) = f(ω) for each ω /∈ S.

Any bistochastic matrix may be expressed as a convex combination of permu-
tation matrices (see Birkoff (1946)). In that sense, it is a stochastic general-
ization of permutation. We consider a subclass of bistochastic matrices that
do not change attitude toward any precise information.

Definition 3 A bistochastic transformation Π is S-unitary if for every p, q ∈
∆(S) and f ∈ F ,

({p}, f) % ({q}, f) =⇒ ({Πp},Πf) % ({Πq},Πf).

Denote the set of all S-unitary transformations by T (S).

We note that unitary transformations include permutations as a special case.

The following lemma shows that the class of unitary transformations is non-
empty, and is a natural correspondence of the standard unitary transformation
on the Euclidian space, in the probability simplex.

Lemma 1 Assume Axioms 1 to 4 and 7. 12 Then, any bistochastic transfor-
mation Π is S-unitary if and only if there exists λ ∈ [0, 1] such that

ΠtΠ = λI +
1− λ

|S|
E,

where I denotes the identity matrix and E denotes the matrix with all entries
being 1.

We state the axiom.

Axiom 13 (Invariance to Unitary Transformations) For every S ∈ S, any
Π ∈ T (S), f ∈ F and P,Q ∈ P,

(P, f) % (Q, f) =⇒ (ΠP,Πf) % (ΠQ,Πf).

To interpret, suppose that the decision maker prefers P to Q given f . Then
under the above-noted axioms, Πf induces the same ranking of probabilities

12 Alternatively, one can assume Axioms 1 to 3, 7, and 12.
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as f . That is, for any p ∈ P and q ∈ Q,

({p}, f) % ({q}, f) =⇒ ({Πp},Πf) % ({Πq},Πf),

and

({q}, f) % ({p}, f) =⇒ ({Πq},Πf) % ({Πp},Πf).

Thus after the transformation, given Πf , ΠP and ΠQ play the same roles
as P and Q do in the original situation given f . Therefore, it is intuitive
that the ranking of information sets is unchanged, which leads to the ranking
(ΠP,Πf) % (ΠQ,Πf).

The implication of the above invariance axiom is that the decision maker
does not consider that a probability measure at a certain location or direc-
tion is more likely to be true. At the level of how the decision maker selects
the probability distributions, it says that the selection depends only on the
shape of the set, and is independent of its location and direction. We should
note that the notion of unitary invariance presumes that preference follows
the expected utility hypothesis under precise information, which is character-
ized either by the conjunction of (Reduction under Precise Information) and
(c-Independence), or by the conjunction of (Reduction under Precise Informa-
tion) and (Information Independence). Unitary transformation is a stochastic
extension of permutation, and it is assumed that attitude toward precise infor-
mation is neutral to such stochastic extensions. This is the ground assumption
under which the unitary-invariance axiom makes sense.

Finally, we consider a continuity axiom with regard to probability-possibility
sets. 13 Recall that for each S ∈ S, ∆(S) is a compact subset of the Euclidian
space R|S|, and P(S) is a compact metric space with regard to the Hausdorff
metric.

Axiom 14 (Information Continuity): For every S ∈ S, f ∈ F and P ∈
P(S), the sets {Q ∈ P(S) : (Q, f) % (P, f)} and {Q ∈ P(S) : (P, f) % (Q, f)}
are closed with regard to the Hausdorff metric.

Examples below illustrates the roles of the above axioms.

Example 5 Fix S ∈ S, and let P∗(S) be the set consisting of full-dimensional
compact convex subsets, and singleton points of ∆(S). Let α be the uniform
distribution over ∆(S). For P ∈ P∗(S) which is non-singleton, its center of
gravity is defined by

c(P ) =
1

α(P )

∫
P
pα(dp).

13 This axiom has been criticized by Olszewski (2007). However, his criticism does
not apply here as we only consider convex sets.
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When the set is a singleton, its center of gravity is itself. Consider a mapping
ϕ : P∗(S) → P∗(S) defined by

ϕ(P ) = (1− ε){c(P )}+ εP,

where ε ∈ [0, 1] is a fixed parameter.
Representation as in Theorem 1 which is restricted to P∗(S) × F and has
ϕ in the above form satisfies (Invariance to Unitary Transformations), since
the selection depends only on the shape of the set and is invariant to location
and scale. It also satisfies (Information Continuity) on P∗(S)×F . However,
it fails to satisfy (Information Independence), and also it fails to extend to
P(S)×F so as to maintain (Information Continuity).♦

Example 6 Fix S ∈ S and let e = ( 1
|S| , · · · ,

1
|S|) and V = {v ∈ RS : 〈v, e〉 =

0, ‖v‖ = 1} be the |S| − 2 dimensional unit sphere orthogonal to e. Let µ be a
non-atomic probability measure over V . For P ∈ P(S), its generalized Steiner
point with respect to µ is defined by

sµ(P ) =
∫

V
arg max

p∈P
〈p, v〉 µ(dv).

Consider a mapping ϕ : P(S) → P(S) defined by

ϕ(P ) = (1− ε){sµ(P )}+ εP,

where ε ∈ [0, 1] is a fixed parameter.
Representation as in Theorem 1 with ϕ taking the above form satisfies (Infor-
mation Independence) and (Information Continuity), but in general fails to
satisfy (Invariance to Unitary Transformations) unless µ is uniform. When
a permutation invariance condition is imposed on ϕ, we obtain that µ is
permutation-invariant, i.e., µ(π ◦ E) = µ(E) for every Borel subset E of V
and every permutation π. However, the class of permutation-invariant mea-
sures is still very large.
Whether we obtain the above class of selection mappings if we drop or weaken
(Invariance to Unitary Transformations) is an open problem.♦

4.3 Contraction representation result

We now provide the contraction representation in which the selected probability-
possibility set is obtained by (i) solving for the ‘center’ of the probability-
possibility set, and (ii) shrinking the set toward the center to a degree given
by preferences. The ‘center’ is the Steiner point.

Imagine that a vector v is drawn from the unit sphere around the origin ac-
cording to the uniform distribution. Then the Steiner point of set P , denoted
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by s(P ), is the expected maximizer of pv over p ∈ P . Here the uncertainty
is restricted to be about ‘which direction is the right one to go.’ Given set P
and direction v, one goes within the set along this direction until she reaches
an extreme point of the set that maximizes the inner product. However, since
direction v is uncertain, she takes the expectation of such extreme points,
where the distribution is uniform. This contrasts to another notion of center,
the center of gravity, where the decision maker has a prior over the proba-
bility simplex (that is, the uncertainty is about ‘which probability measure
is the right one’), and takes the conditional expectation of measures given a
probability-possibility set.

More formally, fix S ∈ S and let e = ( 1
|S| , · · · ,

1
|S|) and V = {v ∈ R|S| :

〈v, e〉 = 0, ‖v‖ = 1} be the |S| − 2 dimensional unit sphere orthogonal to e.
For P ∈ P(S), its Steiner point is defined by

s(P ) =
∫

V
arg max

p∈P
〈p, v〉ν(dv),

where ν is the uniform distribution over V . 14

A characterization of the Steiner point goes as follows (see Schneider (1993),
Theorem 3.4.2). The only way to select a point from a set according to a
selection process that is 1) continuous, 2) linear, and 3) satisfies an invariance
property with respect to isometries, 15 is to take its Steiner point (also called
Steiner curvature centroid).

Example 7 Steiner point of a segment is its midpoint.

Example 8 Steiner point of a polytope is the weighted average of its vertices,
in which the weight for each vertex is proportional to its outer angle. Take for
instance the set {p|p(1)+ p(2)+ p(3) = 1 and p(2) ≥ p(3)}. Then, the Steiner
point is obtained by putting weight 150/360 on (1, 0, 0), 120/360 on (0, 1, 0)
and 90/360 on (0, 1/2, 1/2).

Example 9 When a probability-possibility set is given as the core of a lower
probability (convex capacity), its Steiner point coincides with the Shapley value
of the lower probability. This is not surprising since in the domain of convex
capacities the Shapley value is the unique single-valued selection of the core
that satisfies mixture independence and permutation invariance.♦

14 Multiplicity of maximizers inside the integral does not matter since uniform dis-
tribution is non-atomic.
15 More specifically, if one transforms a set via an isometry –a combination of ro-
tations and translations– then the point selected from the transformed set should
be the same as the one obtained by applying the isometry to the point selected
initially.
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We now state the contraction representation result.

Theorem 6 The preference relation % satisfies Axioms 1 to 5, 7, 8, and 12 to
14 if and only if we have the representation as in Theorem 1 with the additional
property that for every S ∈ S, and P ∈ P(S),

ϕ(P ) = (1− ε){s(P )}+ ε P

with ε ∈ [0, 1] that is unique.

Notice that the rate ε is constant for every probability-possibility set with
finite support.

Remark 2 Under the representation of Theorem 6, a decision maker b who
is more averse to bet imprecision than a decision maker a will have εb > εa.

4.4 Imprecision premium

We define here a notion of imprecision premium which captures how much
an agent is “willing to lose” when betting on an event in order to act in a
setting that has no imprecision. Consider a preference relation % and let x̄
and x be two prizes in X such that x̄ � x. For any event E ∈ S, let qE be a
probability distribution such that (P, x̄Ex) ∼ (

{
qE
}
, x̄Ex). Under Axioms 1

to 6, such a probability distribution exists and is independent of x̄ and x since
(P, x̄Ex) ∼ (

{
qE
}
, x̄Ex) if and only if qE(E) = minp∈ϕ(P ) p(E).

Definition 4 For any P ∈ P(S), any event E ∈ S, let

• the absolute imprecision premium, πA(E,P ) be defined by s(P )(E)−qE(E),

• the relative imprecision premium, πR(E,P ) be defined by πA(E,P )
s(P )(E)−Minp∈P p(E)

whenever s(P )(E) 6= Minp∈Pp(E).

The absolute premium is thus the mass of probability on the good event that
the agent is willing to forego in order to act in a precise situation represented
by s(P ) rather than with the imprecise probability-possibility set P .

Theorem 7 Let %a and %b be two preference relations defined on P × F ,
satisfying Axioms 1 to 7, and Axiom 9. Then, the following assertions are
equivalent:

(i) %b is more averse to bet imprecision than %a,

(ii) for all P ∈ P(S) and all event E ∈ S, πA
b (E,P ) ≥ πA

a (E,P ).
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Below, we show that the constancy of the relative imprecision premium pro-
vides an alternative characterization (under Axiom 9) of the contraction rep-
resentation.

Definition 5 A decision maker is said to have constant relative imprecision
premium θ if for any P ∈ P and any E ∈ S such that s(P )(E) 6= Minp∈Pp(E),
πR(E,P ) = θ.

Theorem 8 Consider a decision maker satisfying Axioms 1 to 7, and Axiom
9. The following assertions are equivalent:

(i) the decision maker has constant relative imprecision premium, equal to
ε,

(ii) for all P ∈ P, ϕ(P ) = (1− ε){s(P )}+ εP .

5 Example

We develop in this section a simple application of our analysis to portfolio
choice that is similar in spirit to Klibanoff et al. (2005)’s. There are three
assets, a, b, and c. The following table gives the payoff matrix

s 1 2 3 4

a k k k k

b b̄ b̄ 1 1

c c̄ 1 1 c̄

We put the following restrictions on the parameters: c̄ > b̄ > k > 1. The
information available is given by the set

Pα =
{(
p,

1

2
− p, q,

1

2
− q

)
|p ∈

[
0,

1

2

]
, q ∈

[
0,

1

2

]
, |q − p| ≤ α

}

where α ∈ [0, 1
2
]. Hence, the probability of {1, 2} is precise, equal to 1/2 and

similarly for {3, 4}. α is a measure of how “imprecise the set is”: a higher α
corresponds to a higher degree of imprecision. Taken with this information, the
assets have a natural interpretation: asset a is the safe asset, b is the “risky”
asset as its payoffs are measurable with respect to the partition {{1, 2}, {3, 4}},
and asset c is the “imprecise” asset.

We consider a decision maker with CARA utility function u(w) = −e−γw,
where γ is the coefficient of absolute risk aversion. The selected set is given
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by:

ϕ (Pα) =
{(
p,

1

2
− p, q,

1

2
− q

)
|p ∈

[
1

4
− θ,

1

4
+ θ

]
, q ∈

[
1

4
− θ,

1

4
+ θ

]
, |q − p| ≤ α

}

θ is the parameter of imprecision aversion: note that ϕ(Pα) is of the contraction
type with θ = 1− ε. To make things interesting, we assume that θ ≥ α/2, so
that the constraint |q − p| ≤ α is effective in the computation of the optimal
portfolio (although see Remark 3 below.)

The decision maker has one unit of wealth that he has to allocate among the
three assets. We allow for short sales. We consider successively three cases de-
pending on which assets are actually available, the first case being the bench-
mark situation of choice between the safe and the risky asset.

Case 1: choice between safe and risky asset.

This case is the usual one and one gets that b? = 1
γ(1−b̄)

log
(

k−1
b̄−k

)
, which is

naturally independent from the parameters θ and α. Under the parameter
restrictions, it is easy to see that increasing risk aversion decreases holding of
the risky asset.

Case 2: choice between safe and imprecise asset.

The problem to be solved here is to find the optimal amount of the imprecise
asset, i.e., the solution to:

maxc minπ∈ϕ(Pα)−
[
(π(1) + π(4))e−γ((1−c)k+cc̄) + (π(2) + π(3))e−γ((1−c)k+c)

]
,

or rewritten in terms of p and q:

max
c

min
ϕ(Pα)

−
[
(p+ 1/2− q))e−γ((1−c)k+cc̄) + (1/2− p+ q)e−γ((1−c)k+c)

]

As long as c > 0, −e−γ((1−c)k+cc̄) > −e−γ((1−c)k+c) and hence the decision maker
will “use” the probability in ϕ(Pα) that put the highest weight on the event
{2, 3} and lowest weight on {1, 4}. Hence, one wants to minimize p − q. Let
therefore q = 1/4 + θ and p = 1/4 + θ−α. 16 Solving for the optimal solution

16 Actually, it is easy to see that this is not the only possible choice of a minimizing
probability. q = 1/4−θ+α and p = 1/4−θ would also minimize p−q. The optimal
solution however does not depend on which one of these probability distributions is
used, as the objective function depends only on p− q.
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yields

c? =
1

γ(c̄− 1)
log

(
(c̄− k)(1/2− α)

(k − 1)(1/2 + α)

)
One can check that c? is positive as conjectured if (k − 1)/(c̄ − k) < (1/2 −
α)/(1/2 + α). Here, the comparative statics with respect to γ works as in the
single risky asset case. What is more interesting, although intuitive, is that
the imprecise asset holding is decreasing in α: an increase in imprecision of the
information provided reduces the amount of asset the decision maker wants to
hold. Note also that imprecise asset holding does not depend, in this example,
on the imprecision aversion parameter θ (as long as θ ≥ α/2).

Case 3: choice among all three assets.

This is the more general case and is a bit more tedious to study. Let’s write
us the utility of the portfolio in state s. As long as b > 0 and c > 0, one has
that u1 > u2 and u4 > u3 and furthermore, u4 − u3 > u1 − u2. Hence, the
minimizing probability that belongs to ϕ(Pα) is given by p = 1/4 + θ−α and
q = 1/4 + α.

Let K = (c̄−k)(b̄−1)
(c̄−b̄)(k−1)

. Under our assumption, K > 1. Then, the optimal solution

can be written:

b? =
1

γ(b̄− 1)
log

[
(K − 1)

1/4− θ + α

1/4 + θ

]

c? =
1

γ(c̄− 1)
log

[
c̄− b̄

b̄− 1

(
(K − 1)

1/4− θ

1/4 + θ
+

1/4 + θ − α

1/4− θ + α

)]

Under some further (uninteresting) restrictions on the parameters, one can
check that b? > 0 and c? > 0 as conjectured when picking the minimizing
probability distribution.

One can thus perform comparative statics exercises. As α increases, that is
as the information available is less precise, the decision maker will hold more
of the risky asset and less of the imprecise asset. Thus, there is some form
of substitution among assets as imprecision increases. This suggests that the
observed under-diversification of decision makers’ portfolio might be a conse-
quence of how imprecision affects different assets. More specifically, consider
parameter values such that b? > c? (in our toy example this is the case for a
large range of parameter values.) Note that if one were to ignore the effect of
uncertainty on asset holding by wrongly setting α = 0, the predicted holding
of the risky asset would be lower than b? while the predicted holding of the
imprecise asset would be higher than c?, i.e., the predicted holdings would
appear to be more diversified. Thus if one fails to identify which assets are

30



affected by imprecision, one could overestimate the predicted weight of these
assets in the optimal portfolio.

Finally, it is also easy to show that the holdings of the risky as well as the
imprecise assets are decreasing in the risk aversion parameter γ, as well as with
the imprecision aversion parameter θ. This might help explaining phenomena
like the equity premium puzzle, as imprecision aversion essentially reinforces
the effect of risk aversion. Interestingly, these two very tentative hints as to
how to account for the under-diversification puzzle and the equity premium
puzzle in our model are linked to two different parameters (imprecision and
imprecision aversion) and could therefore be incorporated in the same model.

Remark 3 The comparative static exercises performed were done under the
assumption that θ ≥ α/2. If this were not the case, then one can show that the
minimizing probability used to evaluate the portfolio returns does not depend
on α (when looking at the choice among all three assets.) Hence, over the full
range of parameters there is a discontinuity in how imprecision affects holding
of the risky and imprecise assets.

Remark 4 Note that all the action in this example does not take place be-
cause of the non-differentiability introduced by the min operator, as for in-
stance in Epstein and Wang (1994) or Mukerji and Tallon (2001). Rather,
the comparative statics were done at points where, locally, the decision maker
behaves like an expected utility maximizer. More precisely, in usual maxmin
expected utility models, decision makers look like expected utility maximizers
away from the 45 degree line and there is no sense in which one can “change
the set of priors” as there is no explicit link with the available information. In
our model, there is some leverage in that respect even away from the kinks, as
we have a way to link changes in the set of revealed probability distributions
to changes in available information and to changes in imprecision attitudes.
Thus, although non smooth, our model remains tractable in applications.
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Appendix

Proof of Theorem 1

We only show sufficiency. Fix P ∈ P . Then, Gilboa and Schmeidler (1989)
result yields that Axioms 1 to 6 hold if and only if there exists a function
UP : P × F → R such that UP (P, f) ≥ UP (P, g) if and only if (P, f) % (P, g)
and a mixture-linear function uP : ∆(X) → R and a unique set P̄ ∈ P such
that

UP (P, f) = min
p∈P̄

∑
ω∈Ω

uP (f(ω)) p(ω).

Moreover, uP is unique up to positive linear transformations. For each P ,
define ϕ(P ) = P̄ as obtained from Gilboa and Schmeidler’s theorem. The
latter also implies that the decision maker is an expected utility maximizer over
constant acts. Axiom 3 implies that, for any P,Q ∈ P , uP and uQ represent
the same expected utility over constant acts. Hence, they can be taken so that
uP = uQ = u.

To show that the representation can be extended to the entire domain P ×F ,
let (P, f) % (Q, g). Since S(P ) and S(Q) are finite and f(ω) and g(ω) have
finite support, using Axiom (3), there exist x and x in X such that for all ω ∈
S(P )∪S(Q), for all x ∈ Supp(f(ω))∪Supp(g(ω)), (P, kx) % (P, kx) %

(
P, kx

)
where kx (resp. kx and kx) is the constant act giving the degenerate lottery δx̄
(resp. δx and δx ) yielding x (resp. x and x) for sure. Hence, by Axiom 6, we

know that (P, kx) % (P, f) %
(
P, kx

)
and (P, kx) % (P, g) %

(
P, kx

)
By Axioms 1 and 2, there exists λ such that (P, f) ∼ (P, λkx + (1 − λ)kx).
Similarly, there exists µ such that (Q, g) ∼ (Q, µkx + (1− µ)kx). Thus,

(P, f) % (Q, g) ⇔ (P, λkx + (1− λ)kx) % (Q, µkx + (1− µ)kx)

Now, (P, f) ∼ (P, λkx + (1− λ)kx) implies that minp∈ϕ(P )

∫
u ◦ fdp = u(λδx +

(1 − λ)δx). We also have that minp∈ϕ(Q)

∫
u ◦ gdp = u(µδx + (1 − µ)δx) and

u(λδx + (1− λ)δx) ≥ u(µδx + (1− µ)δx), which implies that

min
p∈ϕ(P )

∑
ω∈Ω

uP (f(ω)) p(ω) ≥ min
p∈ϕ(Q)

∑
ω∈Ω

uP (g(ω)) p(ω).

We end by proving that supp(ϕ(P )) ⊂ supp(P ). Assume to the contrary that
supp(ϕ(P )) is not included in supp(P ). Then there exists p∗ ∈ ϕ(P ) and
ω ∈ Ω such that ω ∈ supp(p∗) and ω /∈ supp(P ). Consider x and x in X such
that u(δx) > u(δx) and let f be defined by f(ω) = δx for all ω ∈ supp(P ),
f(ω) = δx otherwise. Thus,

∑
ω∈Ω u(f(ω)) p∗(ω) < u(x). Consider also the act
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g defined by g(ω) = δx for all ω ∈ Ω. Then,

min
p∈ϕ(P )

∑
ω∈Ω

u(f(ω)) p(ω) ≤
∑
ω∈Ω

u(f(ω)) p∗(ω) < u(x) = min
p∈ϕ(P )

∑
ω∈Ω

u(g(ω)) p(ω).

Hence, (P, g) � (P, f), a violation of Axiom 6 since g = fsupp(P )g.

Proof of Theorem 2

We prove the selection property in two independent steps: the first one gives
the consequences of Axiom 7, the second gives the consequences of Axiom 8.

Property 1 Assume Theorem 1. Then, under Axiom 7, ϕ({p}) = {p}.

Proof: ({p}, f) ∼ ({p}, l(p, f)) implies by Theorem 1 that minq∈ϕ{p}
∑

ω∈Ω u(f(ω)) p(ω) =∑
ω∈Ω p(ω)u(f(ω)). This is true for any f . By normalization, let u be such

that u(δx̄) = 1 and u(δx) = 0 for some x̄, x ∈ X. Let f be an act that yields
(δx̄, δx . . . , δx), a vector of dimension #supp(p), for state in supp(p) and con-
sider permutations on the support. One then gets that minq∈ϕ{p} q(ω) = p(ω)
for all ω ∈ supp({p}). Hence, ϕ({p}) = {p}.

Property 2 Assume Theorem 1. Then, under Axiom 8, ϕ(P ) ⊂ co (∪p∈Pϕ({p})).

Proof: Let P ∈ P and assume that ϕ(P ) 6⊂ co (∪p∈Pϕ({p})), i.e., there exists
p∗ ∈ ϕ(P ) such that p∗ 6∈ co (∪p∈Pϕ({p})). Using a separation argument,
there exists a function φ : Ω → R such that

∫
φdp∗ < min

p∈co(∪p∈P ϕ({p}))

∫
φdp.

Let x̄, x ∈ X such that u(δx̄) > u(δx). Normalize u so that u(δx̄) = 1 and
u(δx) = 0.

Since supp(P ) ∪ supp (co (∪p∈Pϕ({p}))) is a finite set, there exist numbers
m > 0 and `, such that for all ω ∈ supp(P )∪supp (co (∪p∈Pϕ({p}))), mφ(ω)+
` ∈ [0, 1].

Construct f as follows:

f(ω) =

 (mφ(ω) + `)δx̄ + (1− (mφ(ω) + `))δx ∀ω ∈ supp(P ) ∪ supp (co (∪p∈Pϕ({p})))

δx otherwise

and let β ≡ ∑
ω∈Ω u(f(ω))p∗(ω) ∈ [0, 1].

Let g = 1
2
f + 1

2
kβδx̄+(1−β)δx . Since for all p,

∑
ω∈Ω

u(kβδx̄+(1−β)δx)p(ω) = β

33



one gets that
∑

ω∈Ω u(f(ω))p∗(ω) =
∑

ω∈Ω u(g(ω))p∗(ω).

Now, observe that for all p,
∑

ω∈Ω u(g(ω))p(ω) = 1
2

∑
ω∈Ω u(f(ω))p(ω)+1

2

∑
ω∈Ω u(f(ω))p∗(ω).

By construction,

min
q∈ϕ({p})

∑
ω∈Ω

u(f(ω))q(ω) ≥ min
q∈co(∪p∈P ϕ({p}))

∑
ω∈Ω

u(f(ω))q(ω) >
∑
ω∈Ω

u(f(ω))p∗(ω)

Thus, since min
q∈ϕ({p})

∑
ω∈Ω u(g(ω))q(ω) = 1

2
min

q∈ϕ({p})

∑
ω∈Ω u(f(ω))q(ω)+1

2

∑
ω∈Ω u(f(ω))p∗(ω),

we get
min

q∈ϕ({p})

∑
ω∈Ω

u(f(ω))q(ω) > min
q∈ϕ({p})

∑
ω∈Ω

u(g(ω))q(ω)

and therefore ({p}, f) � ({p}, g) for all p ∈ P .

On the other hand, min
q∈ϕ(P )

∑
ω∈Ω u(f(ω))q(ω) ≤ ∑

ω∈Ω u(f(ω))p∗(ω). Hence,

min
q∈ϕ(P )

∑
ω∈Ω u(g(ω))q(ω) = 1

2
min

q∈ϕ(P )

∑
ω∈Ω u(f(ω))q(ω) + 1

2

∑
ω∈Ω u(f(ω))p∗(ω)

≥

min
q∈ϕ(P )

∑
ω∈Ω u(f(ω))q(ω).

Therefore (P, g) % (P, f), a contradiction.

Combining these two properties yields the (Selection) property. Finally, we
prove that monotonicity is implied by the two extra axioms.

Property 3 Assume Axioms 1 to 4 hold. Then, Axioms 7 and 8 imply Axiom
6.

Proof: Take P ∈ P and f, g ∈ F such that (P, f(ω)) % (P, g(ω)) for
every ω ∈ supp(P ). By Axiom 3, we can define, for fixed P , the preference
over lottery outcomes %? by l % m if (P, l) %? (P,m). By Axioms 2 and 4,
%? satisfies the vNM conditions for the existence of a mixture linear utility
function u.

(P, f(ω)) % (P, g(ω)) ∀ω ∈ supp(P )⇔u(f(ω) ≥ u(g(ω)) ∀ω ∈ supp(P )

⇔
∑

ω∈supp(P )

p(ω)u(f(ω) ≥
∑

ω∈supp(P )

p(ω)u(g(ω)) ∀p ∈ P

⇔u(l(p, f)) ≥ u(l(p, g)) ∀p ∈ P
⇔ ({p}, f) % ({p}, g) by Axiom 7

⇔ (P, f) % (P, g) by Axiom 8.
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Proof of Theorem 3

[(i) ⇒ (ii)] By (i), for any q ∈ P and any E ⊂ supp(P ), q(E) ≥ min
p∈ϕa(P )

p(E)

imply q(E) ≥ min
p∈ϕb(P )

p(E). Hence, min
p∈ϕa(P )

p(E) ≥ min
p∈ϕb(P )

p(E), proving (ii).

[(ii) ⇒ (i)] Straightforward.

Proof of Proposition 1

[(i) ⇒ (ii)] Let P,Q ∈ P and α ∈ [0, 1] satisfy the assumptions of (ii) of the
Proposition. We first prove that ϕ(Q) ⊆ Q∗ where

Q∗ = {q|∃p ∈ ϕ(P ) s.th. q(ω) = αp(
ω + 1

2
) if ω odd and q(ω) = (1−α)p(

ω

2
) if ω even}

Assume that there exists p∗ ∈ ϕ(Q) such that p∗ /∈ Q∗. Since Q∗ is a convex
set, using a separation argument, there exists a function φ : Ω → R such that∫
φdp∗ < minp∈Q∗

∫
φdp. Since supp(Q) is a finite set, there exist numbers a, b

with a > 0, such that ∀ω ∈ supp(Q), (aφ(ω) + b) ∈ u(∆(X)). Then, for all
ω ∈ supp(Q) there exists y(ω) ∈ ∆(X) such that u(y(ω)) = aφ(ω) + b. Define
h ∈ F by h(ω) = y(ω) for all ω ∈ supp(Q), h(ω) = δx for all ω ∈ Ω\supp(Q),
where x ∈ X.

Then define f, g ∈ F by f(ω) = h(2ω − 1) and g(ω) = h(2ω). We have that
supp(Q∗) ⊆ supp(Q) and therefore

min
p∈Q∗

∑
ω∈Ω

u(h(ω)) p(ω) = min
p∈ϕ(P )

∑
ω∈Ω

u(αf(ω) + (1− α)g(w)) p(ω)

while

min
p∈Q∗

∑
ω∈Ω

u(h(ω)) p(ω) >
∑
ω∈Ω

u(h(ω)) p∗(ω) ≥ min
p∈ϕ(Q)

∑
ω∈Ω

u(h(ω)) p(ω)

and thus

(P, αf + (1− α)g) � (Q, h)

which contradicts Axiom 9.

We can show that Q∗ ⊆ ϕ(Q) with the same kind of proof.

[(ii) ⇒ (i)] Let f, g, h and P,Q be as in Axiom 9. Given the representation
theorem and (ii), we have that:

U(P, αf + (1− α)g) = minp∈ϕ(P )
∑

ω∈Ω p(ω)[αu(f(ω)) + (1− α)u(g(ω))] and

U(Q, h) = minq∈ϕ(Q)
∑

ω∈Ω q(ω)u(h(ω)), which, given Property (1), is equal to
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min
p∈ϕ(P )

∑
ω∈Ω, ω odd

αp(
ω + 1

2
)u(f(

ω + 1

2
)) +

∑
ω∈Ω, ω even

(1− α)p(
ω

2
)u(g(

ω

2
))

Collecting terms yields immediately that this is equal to minp∈ϕ(P )
∑

ω∈Ω p(ω)[αu(f(ω))+
(1− α)u(g(ω))] and hence (P, αf + (1− α)g) ∼ (Q, h).

Proof of Theorem 4

[(i) ⇒ (ii)] Let P ∈ P. Assume that ϕa(P ) 6⊂ ϕb(P ), i.e., there exists p∗ ∈
ϕa(P ) such that p∗ 6∈ ϕb(P ). Using a separation argument, there exists a
function φ : Ω → R such that

∫
φdp∗ < min

p∈ϕb(P )

∫
φdp. Let x̄ and x in X be

such that both a and b strictly prefer x̄ to x. Note that we can choose by
normalization ua and ub so that ua(x̄) = ub(x̄) = 1 > ua(x) = ub(x) = 0.
Since supp(P ) is a finite set, there exist numbers m > 0 and `, such that
for all ω ∈ supp(P ), mφ(ω) + ` ∈ [0, 1]. Denote supp(P ) = {1, .., n}. 17 Let
αω = mφ(ω) + `, ω ∈ supp(P ).

Let f 0 ∈ F such that f 0(ω) = αωδx̄ + (1 − αω)δx for all ω = 1, ..., n and
f 0(ω) = δx for all ω ∈ Ω\supp(P ).

The act f 0 can be used to “separate” p? from ϕb(P ). It has the feature that,
in each state, it yields a lottery on the same outcomes x̄ and x. The rest of
the proof consists in using Axiom 9 recursively to build an equivalent pair
act/probability-possibility set in which the act is now a bet of the form x̄Ex.

At each stage of the recursion, each state ω is split into two, say ω̄ and ω. At
each stage, build a new act by taking the appropriate state (defined by the
recursion) and decomposing the lottery αx̄ + (1 − α)x in state ω into an act
that yields x̄ for sure in “sub-state” ω̄ and x in “sub-state” ω. For all the other
states, simply replicate the act (i.e., the value in each sub-state is the same.)

Formally, define f i ∈ F for i = 1, ..., n as follows:

• For all ω ∈ {1, · · · , 2i−1n},
· If f i−1(ω) 6= f 0(i), then f i(2ω − 1) = f i(2ω) = f i−1(ω)
· If f i−1(ω) = f 0(i), then f i(2ω − 1) = δx̄ and f i(2ω) = δx

• For all ω > 2in, f i(ω) = δx .

17 This is not without loss of generality. However, it is straightforward conceptually
although notationally involved to generalize the proof to the case where supp(P ) is
any finite set {ω1, . . . , ωn}.
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f 0(1) = α1x̄− (1− α1)x

x̄ x

x̄ x̄

x̄ x̄ x̄ x̄

x x

x x x x

f 0(2) = α2x̄− (1− α2)x

f 0(2) f 0(2)

x̄ x

x̄ x̄ x x

x̄ x

x̄ x̄ x x

f 0(3) = α3x̄− (1− α3)x

f 0(3) f 0(3)

f 0(3) f 0(3)

x̄ x x̄ x

f 0(3) f 0(3)

x̄ x x̄ x

α1 1− α1

α2 1− α2

α3

α2

α3 α3 α3 α3 α3 α3 α3 α3 α3 α3 α3

α2 α2 α2 α2

α1 1− α1 α1 1− α1

ω = 1 ω = 2 ω = 3

ω = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

f 0

f 1

f 2

f 3

Fig. 2. An example of construction of a bet

Figure 2 illustrates the recursion for an act f 0 whose support is {1, 2, 3}, which
is ultimately spread, via duplication of the states, on a bet that involves 24
states.

A similar operation has to be done for the probability-possibility sets, so as
to maintain indifference throughout.

• Q1 = {q|∃p ∈ P s.th. q(2ω − 1) = α1p(ω) and q(2ω) = (1− α1)p(ω) for all
ω ∈ {1, · · · , n}}

• for i = 2, ..., n, Qi = {q|∃p ∈ Qi−1 s.th. q(2ω − 1) = αip(ω) and q(2ω) =
(1− αi)p(ω) for all ω ∈ {1, · · · , 2i−1n}}

Finally, expand p∗ in a similar way:

• p∗1 be such that p∗1(2ω − 1) = α1p
∗(ω) and p∗1(2ω) = (1− α1)p

∗(ω) for all
ω ∈ {1, · · · , n}

• for i = 2, ..., n, let p∗i be such that p∗i(2ω − 1) = αip
∗i−1(ω) and p∗i(2ω) =

(1− αi)p
∗i−1(2ω) for all ω ∈ {1, · · · , 2i−1n}.

By Proposition 1, one can check that:

• for h = a, b

min
p∈ϕh(P )

∑
ω∈Ω

uh(f
0(ω)) p(ω) = min

p∈ϕh(Q1)

∑
ω∈Ω

uh(f
1(ω)) p(ω)

and
∑
ω∈Ω

uh(f
0(ω)) p∗(ω) =

∑
ω∈Ω

uh(f
1(ω)) p∗1(ω)

• for h = a, b, for i = 2, ..., n
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min
p∈ϕh(Qi−1)

∑
ω∈Ω

uh(f
i−1(ω)) p(ω) = min

p∈ϕh(Qi)

∑
ω∈Ω

uh(f
i(ω)) p(ω)

and
∑
ω∈Ω

uh(f
i−1(ω)) p∗i−1(ω) =

∑
ω∈Ω

uh(f
i(ω)) p∗i(ω).

• for i = 1, ..., n, observe that p∗i ∈ ϕa(Q
i). Hence,

min
p∈ϕb(P )

∑
ω∈Ω

ub(f
0(ω)) p(ω) = min

p∈ϕb(Qn)

∑
ω∈Ω

ub(f
n(ω)) p(ω) >∑

ω∈Ω

ub(f
0(ω)) p∗(ω) =

∑
ω∈Ω

ub(f
n(ω)) p∗n(ω),

while ∑
ω∈Ω

ua(f
0(ω)) p∗(ω) =

∑
ω∈Ω

ua(f
n(ω)) p∗n(ω) ≥

min
p∈ϕa(P )

∑
ω∈Ω

ua(f
0(ω)) p(ω) = min

p∈ϕa(Qn)

∑
ω∈Ω

ua(f
n(ω)) p(ω).

Observe finally that, as a result of the way the recursion works, fn is of the form
x̄Ex. Now, since by (Reduction under Precise Information) ϕ({p∗n}) = {p∗n},
we have

({p∗n}, x̄Ex) �a (Qn, x̄Ex)

while
(Qn, x̄Ex) �b ({p∗n}, x̄Ex),

which contradicts the fact that �b is more averse to bet imprecision than �a.

[(ii) ⇒ (i)] Straightforward.

Proof of Theorem 5

Let f, g ∈ F and P ∈ P and assume (P, f) ∼ (P, g). Define h by h(ω) =
f(ω+1

2
) if ω is odd, and h(ω) = g(ω

2
) if ω is even. For any α ∈ [0, 1], de-

fine Q(α) = {q|∃p ∈ P s. th. q(ω) = αp(ω+1
2

) if ω is odd and q(ω) = (1 −
α)p(ω

2
) if ω is even}.

By (Decomposition Indifference) (Q(1), h) ∼ (P, f) and (Q(0), h) ∼ (P, g) and
hence, since by assumption (P, g) ∼ (P, f) and % is transitive, (Q(0), h) ∼
(Q(1), h). By (Weak Information Independence) for any λ ∈ [0, 1], (λQ(1) +
(1− λ)Q(0), h) ∼ (Q(0), h). Hence, (λQ(1) + (1− λ)Q(0), h) ∼ (P, f).

Now, Q(λ) is conditionally more precise than λQ(1) + (1 − λ)Q(0). Indeed,
(i) Q(λ) ⊂ λQ(1) + (1− λ)Q(0) and (ii) take as a partition of the state space
{E1, E2, . . . } where En = {2n−1, 2n} for n = 1, . . . , then the condition holds.
Hence, (Q(λ), h) � (P, f) and therefore, since (Decomposition Indifference)
implies that (Q(λ), h) ∼ (P, λf+(1−λ)g), we have: (P, λf+(1−λ)g) � (P, f).
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Proofs for the contraction representation result

Proof of Proposition 2 (Mixture linearity)

Lemma 2 Under (Information Independence), for every P,Q ∈ P, f ∈ F
and λ ∈ [0, 1],

U(λP + (1− λ)Q, f) = λU(P, f) + (1− λ)U(Q, f).

Proof. Let {p}, {q} ∈ P be such that (P, f) ∼ ({p}, f) and (Q, f) ∼ ({q}, f),
respectively. Then, repeated application of (Information Independence) deliv-
ers

(λP + (1− λ)Q, f) ∼ (λ{p}+ (1− λ)Q, f) ∼ (λ{p}+ (1− λ){q}, f).

Since U(λ{p} + (1 − λ){q}, f) = λU({p}, f) + (1 − λ)U({q}, f) is true for
precise information, we obtain the claim.

Lemma 3 Assume Axioms 1 to 6, and 12. Then, for every P,Q ∈ P and
λ ∈ [0, 1], ϕ(λP + (1− λ)Q) = λϕ(P ) + (1− λ)ϕ(Q).

Proof. By construction,

U(λP + (1− λ)Q, f) = min
p∈ϕ(λP+(1−λ)Q)

∑
ω∈S

u(f(ω)) p(ω).

for any f ∈ F .

By mixture-linearity of U over P , the above is equal to

λU(P, f) + (1− λ)U(Q, f) =λ min
p∈ϕ(P )

∑
ω∈S

u(f(ω)) p(ω) + (1− λ) min
p∈ϕ(Q)

∑
ω∈S

u(f(ω)) p(ω)

= min
p∈λϕ(P )+(1−λ)ϕ(Q)

∑
ω∈S

u(f(ω)) p(ω)

for any f ∈ F . By uniqueness of ϕ(·), we obtain the result.

This also serves as a proof of Proposition 2.

Continuity

Lemma 4 Assume Axioms 1 to 6, and 14. Then, the mapping ϕ : P(S) →
P(S) is continuous with respect to the Hausdorff metric for each fixed S ∈ S.
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Proof. Let {P n} be a sequence in P(S) converging to P ∈ P(S). Because
P(S) is compact, without loss of generality we assume that {ϕ(P n)} is con-
vergent. Suppose ϕ∗ ≡ limn→∞ ϕ(P n) 6= ϕ(P ). Then there exists f ∈ F such
that

U(P, f) = min
p∈ϕ(P )

∑
ω∈S

u(f(ω)) p(ω)

>min
p∈ϕ∗

∑
ω∈S

u(f(ω)) p(ω)

= lim
n→∞

min
p∈ϕ(P n)

∑
ω∈S

u(f(ω)) p(ω)

= lim
n→∞

U(P n, f),

which is a contradiction to (Information Continuity).

Proof of Lemma 1

We now prove Lemma 1. Assume Axioms 1 to 4 and 7. Or, assume Axioms 1
to 3, 7, and 12. Let e =

(
1
|S| , · · · ,

1
|A|

)
∈ R|S|.

Proof. Because of the above-noted axioms, we have expected utility represen-
tation when information is precise. Without loss of generality, we deal with
payoff vectors.
(⇒): In the payoff space, the unitary condition is equivalent to saying that

〈p, x〉 ≥ 〈q, x〉 =⇒ 〈Πp,Πx〉 ≥ 〈Πq,Πx〉.

This implies that

(p− q)tx = 0 =⇒ (p− q)tΠtΠx = 0.

Take any ω ∈ S and let δω be the vector which assigns 1 on the ω-th coordinate
and 0 on the others. Then, (p− q)tδω = 0 is equivalent to pω = qω.

Pick any ω′, ω′′ 6= ω, and take p, q ∈ ∆(S) such that (p − q)ω′ = α > 0,
(p− q)ω′′ = −α, and all the other coordinates of p− q are zero. Then p and q
satisfy the assumption of the above condition and we obtain

(p− q)tΠtΠδω = α(Πt
ω′Πω − Πt

ω′′Πω) = 0,

which implies Πt
ω′Πω = Πt

ω′′Πω. Since ω is arbitrary, this implies that all the
off-diagonal entries of ΠtΠ are the same. Therefore, all the diagonal entries of
ΠtΠ are the same too.

Remaining to show is that the diagonal entries of ΠtΠ cannot be smaller than
the off-diagonal entries. Denote the diagonal entry by a, off-diagonal entry by
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b. Let p be the vector in ∆(S) given by pω = 1− (|S| − 1)c and pω′ = c for all
ω′ 6= ω, where 1 ≤ c ≤ 1

|S|−1
. Then we have (δω − p)tδω = (|S| − 1)c ≥ 0.

The unitary invariance condition implies that (δω − p)tΠtΠδω ≥ 0. Since
(δω − p)tΠtΠδω = (|S| − 1)c(a− b), we obtain the desired result.

(⇐): Since

〈Πp,Πx〉= ptΠtΠx

= pt

(
λI +

1− λ

|S|
E

)
x

=λ〈p, x〉+
1− λ

|S|
〈e, x〉,

we obtain the desired property

〈p, x〉 ≥ 〈q, x〉 =⇒ 〈Πp,Πx〉 ≥ 〈Πq,Πx〉.

For later use, we show the following mathematical fact.

Lemma 5 For any bistochastic matrix Π, the following two statements are
equivalent:
(i) The matrix ΠtΠ takes the form

ΠtΠ = λI +
1− λ

|S|
E,

for a given λ ∈ [0, 1], where I is the identity matrix and E is a matrix in
which all the entries are 1.
(ii) The matrix Π satisfies ‖Πp−Πq‖ =

√
λ‖p− q‖ for any p, q ∈ ∆(S) for a

given λ ∈ [0, 1], where ‖ · ‖ denotes the Euclidian norm;

Proof. For the proof, let e = ( 1
|S| , · · · ,

1
|S|). Let δω be the vector which assigns

1 on the ω-th coordinate and 0 on the others. Also let Πω be the ω-th column
vector of Π.
(i) ⇒ (ii): It follows from
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〈Πp− Πq,Πp− Πq〉= (p− q)tΠtΠ(p− q)

= (p− q)t

(
λI +

1− λ

|S|
E

)
(p− q)

=λ(p− q)tI(p− q) +
1− λ

|S|
(p− q)tE(p− q)

=λ〈p− q, p− q〉,

where the last line follows from E(p− q) = Ep− Eq = 1− 1 = 0.
(ii) ⇒ (i): Condition (ii) is written as

〈Πp− Πq,Πp− Πq〉 = λ〈p− q, p− q〉

for all p, q ∈ ∆(S). In particular, by taking q = e, we have

〈Πp− Πe,Πp− Πe〉 = λ〈p− e, p− e〉

Since 〈Πp, e〉 = 〈p, e〉 = 〈e, e〉 = 1
|S| , the above condition reduces to

ptΠtΠp = λptp+
1− λ

|S|

By taking p = δω, we have

Πt
ωΠω = λ+

1− λ

|S|
,

which is the (ω, ω) diagonal entry of ΠtΠ. Since ω is arbitrary, all the diagonal
entries are the same.

To show the claim for the off-diagonal entries, let p = δω and q = δω′ , where
ω′ 6= ω. Then the condition reduces to

Πt
ωΠω − 2Πt

ωΠω′ + Πt
ω′Πω′ = 2λ.

Since Πt
ωΠω = Πt

ω′Πω′ = λ+ 1−λ
|S| , we obtain

Πt
ωΠω′ =

1− λ

|S|

which is the (ω, ω′) off-diagonal entry of ΠtΠ. Since ω, ω′ are arbitrary, all the
off-diagonal entries are the same.

Unitary invariance

Now we show that our selection mapping ϕ is unitary-invariant.
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Lemma 6 Assume Axioms 1 to 6, 7 and 13. Then, for any P ∈ P(S) and
Π ∈ T (S), ϕ(ΠP ) = Πϕ(P ).

Proof. Suppose ϕ(ΠP ) * Πϕ(P ). Then, there is y ∈ RS such that

min
p∈Πϕ(P )

∑
ω∈S

y(ω) p(ω) > min
p′∈ϕ(ΠP )

∑
ω∈S

y(ω) p′(ω)

By taking y = Πx, both sides are written as

min
p∈ϕ(P )

∑
ω∈S

(Πx)(ω) (Πp)(ω) > min
p′∈ϕ(ΠP )

∑
ω∈S

(Πx)(ω) p′(ω) (∗)

By homogeneity with respect to x, without loss of generality, we can set x =
u ◦ f and for some f ∈ F . Take p∗ ∈ arg minp∈ϕ(P )

∑
ω x(ω) p(ω). Since

∑
ω∈S

(Πx)(ω) (Πp)(ω) = λ
∑
ω∈S

x(ω) p(ω) +
1− λ

|S|
∑
ω∈S

x(ω),

we have p∗ ∈ arg minp∈ϕ(P )
∑

ω∈S(Πx)(ω) (Πp)(ω). Thus, the left hand side of
(∗) is equal to U({Πp∗},Πf). On the other hand, the right hand side of (∗) is
U(ΠP,Πf). Thus, U({Πp∗},Πf) > U(ΠP,Πf)

By definition of p∗, we have U({p∗}, f) = U(P, f). This contradicts (Invariance
to Unitary Transformations).

We similarly obtain a contradiction for the case ϕ(ΠP ) + Πϕ(P ).

Constructing the additive invariant mapping

Below we translate the properties obtained above to the corresponding prop-
erties in the Euclidian space of dimension |S| − 1, in several steps. Recall the
notation e = ( 1

|S| , · · · ,
1
|S|). Define ϕ∗ : P(S)− {e} → P(S)− {e} by

ϕ∗(K) = ϕ(K + {e})− {e}

Lemma 7 Assume Axioms 1 to 6, 7 , 12 and 13. Then, for any K ∈ P(S)−
{e} and λ ≥ 0 with λK ∈ P(S)− {e}, ϕ∗(λK) = λϕ∗(K).

Proof. The case of λ = 0 or 1 is obvious. Let λ ∈ (0, 1). Then,
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ϕ∗(λK) =ϕ(λK + {e})− {e}
=ϕ(λ(K + {e}) + (1− λ){e})− {e}
=λϕ(K + {e}) + (1− λ)ϕ({e})− {e}
=λϕ(K + {e}) + (1− λ){e} − {e}
=λ(ϕ(K + {e})− {e})
=λϕ∗(K).

The case of λ > 1 is immediate from the above.

Let He be the |S| − 1 dimensional linear subspace of RS which is orthogonal
to e. Let Ke be the family of compact convex subsets of He, endowed with the
Hausdorff metric. By the above lemma, we extend ϕ∗ to Ke. Also it preserves
continuity in the Hausdorff metric. The claim below shows that ϕ∗ satisfies
additivity and translation invariance.

Lemma 8 Assume Axioms 1 to 6, 7 , 12 and 13. Then, for any K,K ′ ∈ Ke,
ϕ∗(K +K ′) = ϕ∗(K) + ϕ∗(K ′). In particular, ϕ∗(K + {z}) = ϕ∗(K) + {z}.

Proof. Take sufficiently small λ > 0, then λK, λK ′ ∈ P(S)− {e}. By homo-
geneity shown in the previous lemma,

ϕ∗(K +K ′) =
2

λ
ϕ∗
(
λK + λK ′

2

)

Then, we have

ϕ∗
(
λK + λK ′

2

)
=ϕ

(
λK + {e}

2
+
λK ′ + {e}

2

)
− {e}

=
1

2
ϕ(λK + {e}) +

1

2
ϕ(λK ′ + {e})− {e}

=
ϕ(λK + {e})− {e}

2
+
ϕ(λK ′ + {e})− {e}

2

=
1

2
ϕ∗(λK) +

1

2
ϕ∗(λK ′)

=
λ

2
ϕ∗(K) +

λ

2
ϕ∗(K ′),

where the second line follows from mixture linearity of ϕ.

For later use, we show the following mathematical fact.

Lemma 9 Let F : ∆(S) → ∆(S) be a mixture-linear mapping satisfying
F (e) = e. Then there is a unique bistochastic matrix Π such that F (p) = Πp
for every p ∈ ∆(S).
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Proof. Given such F , define Π by Πij = Fi(δj) where δj is a probability which
assigns unit mass on state j ∈ S. By mixture linearity, Π represents F .

Suppose there are two matrices Π and Π′ which represent F . If Πij 6= Π′
ij for

some i, j ∈ Ω, this leads to Fi(δj) = Πij 6= Π′
ij = Fi(δj), a contradiction. Thus

Π is unique.

If Πij < 0 for some i, j ∈ S, this leads to Fi(δj) < 0, which is a contradiction.

For any j ∈ S, Πδj = (Πij)i∈S ∈ ∆(S). Therefore,
∑

i∈S Πij = 1 for each j ∈ S.

Since Πe = e, for each i ∈ N , 1
|S|
∑

j∈S Πij = 1
|S| . Therefore,

∑
j∈S Πij = 1 for

each i ∈ S.

Lemma 10 Assume Axioms 1 to 6, 7 , 12 and 13. Let G : He → He be a
linear transformation such that G(∆(S)−{e}) ⊂ ∆(S)−{e} and there exists
λG ∈ (0, 1] such that ‖G(x)‖ = λG‖x‖ for any x ∈ He.
Then, ϕ∗(GK) = Gϕ∗(K) for all K ∈ Ke.

Proof. Given G, define FG : ∆(S) → ∆(S) by

FG(p) = G(p− e) + e.

Then, it is easy to see that FG takes values in ∆(S) and is mixture linear and
FG(e) = e. By Lemma 9, it has a representation by a doubly stochastic matrix
ΠG and FG(p) = ΠGp. Since FG satisfies the unitary property, ΠG is in T (S).

By homogeneity of ϕ∗, without loss of generality we can take K ∈ P(S)−{e}.
By Lemma 9, G has a corresponding unitary transformation ΠG and G(x) =
ΠG(x+ e)− e for any x ∈ ∆(S)− {e}.

Then, from the unitary invariance property of ϕ we have

ϕ∗(G(K)) =ϕ(G(K) + {e})− {e}
=ϕ(ΠG(K + {e})− {e}+ {e})− {e}
=ϕ(ΠG(K + {e}))− {e}
= ΠGϕ(K + {e})− {e}
=G(ϕ∗(K)).

A linear transformation I : He → He is called isometry if ‖I(x)‖ = ‖x‖. Let I
be the set of isometries. For any isometry I ∈ I, one can take λ > 0 so that λI
satisfies the assumption of Lemma 10. Conversely, any isometry is obtained
from a matrix satisfying the assumption of Lemma 10.
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By homogeneity of ϕ∗, we obtain

Lemma 11 Assume Axioms 1 to 6, 7 , 12 and 13. Then, the mapping ϕ∗

is equivariant in isometries. That is, for any isometry I ∈ I, ϕ∗(I(K)) =
I(ϕ∗(K)).

The |S| − 1 dimensional Euclidian space R|S|−1 is the image of the linear
subspace He by some isometry. Let J : He → R|S|−1 be such isometry. All the
relevant operations are preserved under isometry. Let K|S|−1 be the space of
compact convex subsets of R|S|−1. The space K|S|−1 is also the image of Ke by
the isometry.

Define ϕ∗∗ : K|S|−1 → K|S|−1 by

ϕ∗∗(K) = J(ϕ∗(J−1(K))).

Then, ϕ∗∗ is continuous, additive and equivariant in isometries in R|S|−1 and
translations, and satisfies ϕ∗∗(K) ⊂ K for any K ∈ K|S|−1. Continuity of ϕ∗∗

easily follows from that of ϕ.

Let W = {w ∈ R|S|−1 : ‖w‖ = 1} be the |S| − 2 dimensional unit sphere. For
a compact convex set K ∈ K|S|−1, its Steiner point is defined by

s∗∗(K) =
∫

W
arg max

p∈K
〈p, w〉 ν(dw)

where ν is the uniform distribution over W . 18

Lemma 12 Assume Axioms 1 to 5, 7, 8, and 12 to 14. Then, there exist
ε ≥ 0 and δ ≥ 0 such that

ϕ∗∗(K) = ε [K − {s∗∗(K)}] + δ [−K + {s∗∗(K)}] + {s∗∗(K)}.

for every K ∈ K|S|−1.

Proof. Case 1 |S| = 1, 2: Obvious.

Case 2 |S| = 3: Since the image of a segment is its subsegment, we can apply
Theorem 1.8 (b) in Schneider (1974) so that we obtain

ϕ∗∗(K) = εT1 [K − {s∗∗(K)}] + δT2 [−K + {s∗∗(K)}] + {s∗∗(K)}

with ε ≥ 0, δ ≥ 0 and T1, T2 being some two dimensional rotation matrices.

18 Schneider (1974) has adopted a different definition of Steiner point, but it is
equivalent to the current definition, which follows from Theorem 9.4.1 in Aubin and
Frankowska (1990).
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Consider a segment with midpoint 0. Since its image is its subsegment, (T1

and T2) must be the identity or the symmetry with respect to the origin
respectively. Thus, without loss of generality

ϕ∗∗(K) = ε [K − {s∗∗(K)}] + δ [−K + {s∗∗(K)}] + {s∗∗(K)}

Case 3 |S| ≥ 4: Since ϕ∗∗(K) ⊂ K for any K ∈ K|Ω|−1, the image of any
segment is its subsegment. Thus we can apply Theorem 1.8 (b) in Schneider
(1974) so that we obtain

ϕ∗∗(K) = ε [K − {s∗∗(K)}] + δ [−K + {s∗∗(K)}] + {s∗∗(K)}

with ε ≥ 0, δ ≥ 0.

Proof of Theorem 6

Finally, assume Axioms 1 to 5, 7, 8, and 12 to 14. Remember that Axioms 7
and 8 together imply Axiom 6, under Axioms 1 to 4. Since ϕ(P ) ⊂ P holds
for all P ∈ P here, we have ϕ∗∗(K) ⊂ K for all K ∈ K|Ω|−1.

We show ε ∈ [0, 1] and δ = 0. Since ϕ∗(K) ⊂ K for any K, ε cannot exceed
1. Now consider a family of triangles

Kθ =

{
(x1, x2, 0, · · · , 0) ∈ R|S|−1 : x2 ≤

cos θ

sin θ
x1, x2 ≥ −cos θ

sin θ
x1, x1 ≤ sin θ

}

indexed by 0 < θ < π
2
. Then we have s∗∗(Kθ) = (π−θ

π
sin θ, 0, 0, · · · , 0).

Let x1(Kθ) = maxx∈ϕ∗∗(Kθ) x1, then we have x1(Kθ) = π−θ
π

sin θ + ε θ
π

sin θ +
δ π−θ

π
sin θ. Since ϕ∗∗(Kθ) ⊂ Kθ, this cannot exceed sin θ. Since sin θ is positive,

we can divide both sides of x1(Kθ) ≤ sin θ by sin θ and by arranging we get

δ ≤
θ
π

1− θ
π

(1− ε).

Since this is true for any θ ∈ (0, π
2
), we obtain δ = 0.

Thus

ϕ∗∗(K) = ε [K − {s∗∗(K)}] + {s∗∗(K)}

with ε ∈ [0, 1]. Since Steiner point and every relevant operation are preserved
by isometry, we obtain

ϕ(P ) = ε [P − {s(P )}] + s(P ).
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Constancy of ε with regard to S

Let εS be the rate corresponding to S. When S ⊂ S ′, since P ∈ P(S) implies
P ∈ P(S ′), we must have εS = εS′ . For every S, S ′, since εS = εS∪S′ , and
εS′ = εS∪S′ , we obtain the desired claim.

Proof of Theorem 7

Given the equivalence proved in Theorem 4, we show that ϕa(P ) ⊂ ϕb(P )
implies (ii) and then show that (ii) implies (i).

[ϕa(P ) ⊂ ϕb(P ) ⇒ (ii)] Since πA
a (E,P ) = s(P )(E) − Minp∈ϕa(P )p(E) and

πA
b (E,P ) = s(P )(E)−Minp∈ϕb(P )p(E), ϕa(P ) ⊂ ϕb(P ) implies that πA

b (E,P ) ≥
πA

a (E,P ).

[(ii) ⇒ (i)] Consider prizes x̄ and x in X such that both a and b strictly
prefer x̄ to x, and let P ∈ P , and E ⊂ Ω. For any p, for any agent i = a, b,
({p} , x̄Ex) %i [�i](P, x̄Ex) if, and only if, πA

i (E,P ) ≥ [�]s(P )(E) − p(E).
Therefore since πA

b (E,P ) ≥ πA
a (E,P ), we have

({p} , x̄Ex) %a [�a](x̄Ex, P ) ⇒ ({p} , x̄Ex) %b [�b](P, x̄Ex)

which completes the proof that %b is more averse to bet imprecision than %a.

Proof of Theorem 8

[(i) ⇒ (ii)] Let P ∈ P , and p be a boundary point of P . Define:

ε = Sup {ε′|ε′ ∈ [0, 1] s.th. (ε′p+ (1− ε′)s(P )) ∈ ϕ(P )} .

Then p = εp+ (1− ε)s(P ) is a boundary point of ϕ(P ) since ϕ(P ) is closed.
Since it is convex as well, there exists a function φ : S → R such that

∫
φdp =

min
p∈ϕ(P )

∫
φdp.

Using the notation and definitions introduced in the proof of Theorem 4 in
order to define fn = x̄Ex, p

n, pn and Qn, we have that (fn, {pn}) ∼ (fn, Qn).
Note that pn = εpn + (1− ε)s(Qn). Thus

πR(E,Qn) =
s(Qn)(E)− pn(E)

s(Qn)(E)−Minq∈Qnq(E)
≤ s(Qn)(E)− pn(E)

s(Qn)(E)− pn(E)
= ε.

If ε > ε we get a contradiction with the fact that πR(E,Qn) = ε. Therefore, for
any boundary point p of P , ε (p) = Sup {ε′|ε′ ∈ [0, 1] s.th. (ε′p+ (1− ε)s(P )) ∈ ϕ(P )}
is such that ε (p) ≥ ε. Let p∗ be a boundary point of P such that ε (p∗) ≥ ε (p)
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for all boundary point p of P . Then, there exists a function φ : S → R such
that

∫
φdp∗ = min

p∈P

∫
φdp. Define p∗ = ε(p∗)p∗ + (1 − ε(p∗))s(P ) and consider

now p′ ∈ ϕ(P ). There exists a boundary point p of P and ε′ < ε(p) such that
p′ = ε′p+ (1− ε′)s(P ).

Let us use again the notation and definition introduced in the proof of The-
orem 4 . Since

∫
u ◦ (x̄Ex) dp

∗n ≤
∫
u ◦ (x̄Ex) dp

n and
∫
u ◦ (x̄Ex) dp

∗n ≤∫
u ◦ (x̄Ex) ds(Q

n), we have that
∫
u ◦ (x̄Ex) dp∗n ≤

∫
u ◦ (x̄Ex) dp

′n. Thus∫
u ◦ (x̄Ex) dp∗n = min

r∈ϕ(Qn)

∫
u ◦ (x̄Ex) dr while

∫
u ◦ (x̄Ex) dp∗n = min

r∈ϕ(Qn)

∫
u ◦

(x̄Ex) dr. Therefore

πR(E,Qn) =
s(Qn)(E)− q∗(E)

s(Qn)(E)−Minq∈Qnq(E)
= ε (p∗) ,

and thus ε (p∗) = ε. Hence, for all boundary point p of P , ε (p) = ε which
proves that ϕ(P ) = εP + (1− ε)s(P ).

[(ii) ⇒ (i)] Consider P ∈ P , and E ⊂ Ω such that s(P )(E) 6= Minp∈Pp(E).
We have

min
p∈ϕ(P )

p(E) = εmin
p∈P

p(E) + (1− ε)s(P )(E),

and therefore

πR(E,P ) =
s(P )(E)−Minp∈ϕ(P )p(E)

s(P )(E)−Minp∈Pp(E)
= ε.
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