
Structural VARs

Structural Representation

Consider the structural VAR (SVAR) model

y1t = γ10 − b12y2t + γ11y1t−1 + γ12y2t−1 + ε1t

y2t = γ20 − b21y1t + γ21y1t−1 + γ22y2t−1 + ε2t

where Ã
ε1t
ε2t

!
∼ iid

ÃÃ
0
0

!
,

Ã
σ21 0
0 σ22

!!
.

Remarks:

• ε1t and ε2t are called structural errors

• In general, cov(y2t, ε1t) 6= 0 and cov(y1t, ε2t) 6= 0

• All variables are endogenous - OLS is not appropri-
ate!



In matrix form, the model becomes"
1 b12
b21 1

# "
y1t
y2t

#

=

"
γ10
γ20

#
+

"
γ11 γ12
γ21 γ22

# "
y1t−1
y2t−1

#
+

"
ε1t
ε2t

#
or

Byt = γ0 + Γ1yt−1 + εt

E[εtε
0
t] = D =

Ã
σ21 0
0 σ22

!
In lag operator notation, the SVAR is

B(L)yt = γ0 + εt,

B(L) = B− Γ1L.



Reduced Form Representation

Solve for yt in terms of yt−1 and εt :

yt = B−1γ0 +B
−1Γ1yt−1 +B

−1εt
= a0 +A1yt−1 + ut

a0 = B−1γ0,A1 = B
−1Γ1,ut = B

−1εt
or

A(L)yt = a0 + ut
A(L) = I2 −A1L

Note that

B−1 =
1

∆

"
1 −b12
−b21 1

#
, ∆ = det(B) = 1−b12b21

The reduced form errors ut are linear combinations of the
structural errors εt and have covariance matrix

E[utu
0
t] = B−1E[εtε0t]B

−10

= B−1DB−10

= Ω.

Remark: Parameters of RF may be estimated by OLS
equation by equation



Identification Issues

Without some restrictions, the parameters in the SVAR
are not identified. That is, given values of the reduced
form parameters a0,A1 and Ω, it is not possible to
uniquely solve for the structural parameters B,γ0,Γ1
and D.

• 10 structural parameters and 9 reduced form para-
meters

• Order condition requires at least 1 restriction on the
SVAR parameters

Typical identifying restrictions include

• Zero (exclusion) restrictions on the elements of B;
e.g., b12 = 0.

• Linear restrictions on the elements of B; e.g., b12 +
b21 = 1.



MA Representations

Wold representation

Multiplying both sides of reduced form by A(L)−1 =
(I2 −A1L)−1 to give

yt = μ+Ψ(L)ut
Ψ(L) = (I2 −A1L)−1

=
∞X
k=0

ΨkL
k, Ψ0 = I2,Ψk = A

k
1

μ = A(1)−1a0
E[utu

0
t] = Ω

Remark: Wold representation may be estimated using
RF VAR estimates



Structural moving average (SMA) representation

SMA of yt is based on an infinite moving average of the
structural innovations εt. Using ut = B−1εt in the Wold
form gives

yt = μ+Ψ(L)B−1εt
= μ+Θ(L)εt

Θ(L) =
∞X
k=0

ΘkL
k

= Ψ(L)B−1

= B−1 +Ψ1B
−1L+ · · ·

That is,

Θk = ΨkB
−1 = Ak

1B
−1, k = 0, 1, . . . .

Θ0 = B−1 6= I2



Example: SMA for bivariate system"
y1t
y2t

#
=

"
μ1
μ2

#
+

⎡⎣ θ
(0)
11 θ

(0)
12

θ
(0)
21 θ

(0)
22

⎤⎦ " ε1t
ε2t

#

+

⎡⎣ θ
(1)
11 θ

(1)
12

θ
(1)
21 θ

(1)
22

⎤⎦ " ε1t−1
ε2t−1

#
+ · · ·

Notes

• Θ0 = B−1 6= I2. Θ0 captures initial impacts of
structural shocks, and determines the contempora-
neous correlation between y1t and y2t.

• Elements of theΘk matrices, θ
(k)
ij , give the dynamic

multipliers or impulse responses of y1t and y2t to
changes in the structural errors ε1t and ε2t.



Impulse Response Functions

Consider the SMA representation at time t+ s"
y1t+s
y2t+s

#
=

"
μ1
μ2

#
+

⎡⎣ θ
(0)
11 θ

(0)
12

θ
(0)
21 θ

(0)
22

⎤⎦ " ε1t+s
ε2t+s

#
+ · · ·

+

⎡⎣ θ
(s)
11 θ

(s)
12

θ
(s)
21 θ

(s)
22

⎤⎦ " ε1t
ε2t

#
+ · · · .

The structural dynamic multipliers are

∂y1t+s
∂ε1t

= θ
(s)
11 ,

∂y1t+s
∂ε2t

= θ
(s)
12

∂y2t+s
∂ε1t

= θ
(s)
21 ,

∂y2t+s
∂ε2t

= θ
(s)
22

The structural impulse response functions (IRFs) are the

plots of θ(s)ij vs. s for i, j = 1, 2. These plots summa-
rize how unit impulses of the structural shocks at time t
impact the level of y at time t+ s for different values of
s.

Stationarity of yt implies

lim
s→∞ θ

(s)
ij = 0, i, j = 1, 2



The long-run cumulative impact of the structural shocks
is captured by

Θ(1) =

"
θ11(1) θ12(1)
θ21(1) θ22(1)

#
=

⎡⎣ P∞s=0 θ(s)11 P∞
s=0 θ

(s)
12P∞

s=0 θ
(s)
21

P∞
s=0 θ

(s)
22

⎤⎦
Θ(L) =

"
θ11(L) θ12(L)
θ21(L) θ22(L)

#

=

⎡⎣ P∞s=0 θ(s)11 Ls P∞
s=0 θ

(s)
12 L

sP∞
s=0 θ

(s)
21 L

s P∞
s=0 θ

(s)
22 L

s

⎤⎦



Digression: Dynamic Regression Models

In the SVAR every variable is engodenous. Suppose, for
example, y2t is strictly exogenous which implies b21 = 0
and γ21 = 0. Then, the first equation is an ADL(1,1)

y1t = α+ φy1t−1 + β0y2t + β1y2t−1 + ε1t

cov(y2t, ε1t) = 0

In lag operator notation the equation becomes

φ(L)y1t = α+ β(L)y2t + ε1t

φ(L) = 1− φL, β(L) = β0 + β1L

The second equation is an AR(1) model for y2t

y2t = c+ ρy2t−1 + ε2t

Stationarity now only requires |φ| < 1 and |ρ| < 1.



The first equation may then be solved for y1t as a function
of y2t and ε1t

y1t =
α

φ(1)
+ φ(L)−1β(L)y2t + φ(L)−1ε1t

= μ+ ψβ(L)y2t + ψ(L)εt

μ =
α

φ(1)

ψβ(L) = φ(L)−1β(L), ψ(L) = φ(L)−1

Since y2t is exogenous, we have two sources of shocks.
Note: there can be four types of dynamic multipliers :

∂y1t+s
∂y2t

,
∂y1t+s
∂ε2t

,
∂y1t+s
∂ε1t

,
∂y2t+s
∂ε2t



The short-run dyamic multipliers with respect to y2t and
ε1t are

∂y1t+s
∂y2t

=
∂y1t
∂y2t−s

= ψβ,s

∂y1t+s
∂ε1t

=
∂y1t
∂ε1t−s

= ψs

In the steady state or long-run equilibrium all variables
are constant

y∗1 = μ+ ψβ(L)y
∗
2 = μ+ ψβ(1)y

∗
2

y∗2 =
c

1− ρ

ψβ(1) = φ(1)−1β(1) =
β0 + β1
1− φ

The long-run impact of a change in y2 on y1 is then

∂y∗1
∂y∗2

= ψβ(1) =
β0 + β1
1− φ

=
∞X
s=0

∂y1t+s
∂y2t



Identification issues

In some applications, identification of the parameters of
the SVAR is achieved through restrictions on the para-
meters of the SMA representation.

Identification through contemporaneous restrictions

Suppose that ε2t has no contemporaneous impact on y1t.
Then θ(0)12 = 0 and

Θ0 =

⎡⎣ θ
(0)
11 0

θ
(0)
21 θ

(0)
22

⎤⎦ .
Since Θ0 = B−1 then⎡⎣ θ

(0)
11 0

θ
(0)
21 θ

(0)
22

⎤⎦ =
1

∆

"
1 −b12
−b21 1

#
⇒ b12 = 0

Hence, assuming θ(0)12 = 0 in the SMA representation is
equivalent to assuming b12 = 0 in the SVAR representa-
tion.



Identification through long-run restrictions

Suppose ε2t has no long-run cumulative impact on y1t.
Then

θ12(1) =
∞X
s=0

θ
(s)
12 = 0

Θ(1) =

"
θ11(1) 0
θ21(1) θ22(1)

#
.

This type of long-run restriction places nonlinear restric-
tions on the coefficients of the SVAR since

Θ(1) = Ψ(1)B−1 = A(1)−1B−1

= (I2 −B−1Γ1)−1B−1



Estimation Issues

In order to compute the structural IRFs, the parameters
of the SMA representation need to be estimated. Since

Θ(L) = Ψ(L)B−1

Ψ(L) = A(L)−1 = (I2 −A1L)−1

the estimation of the elements in Θ(L) can often be
broken down into steps:

• A1 is estimated from the reduced form VAR.

• Given cA1, the matrices in Ψ(L) can be estimated
using cΨk =

cAk
1.

• B is estimated from the identified SVAR.

• Given B̂ and Ψ̂k, the estimates ofΘk, k = 0, 1, . . . ,
are given by Θ̂k =

cΨkB̂
−1.



Forecast Error Variance Decompositions

Idea: determine the proportion of the variability of the
errors in forecasting y1 and y2 at time t + s based on
information available at time t that is due to variability
in the structural shocks ε1 and ε2 between times t and
t+ s.

To derive the FEVD, start with the Wold representation
for yt+s

yt+s = μ+ ut+s +Ψ1ut+s−1 + · · ·
+Ψs−1ut+1 +Ψsut +Ψs+1ut−1 + · · · .

The best linear forecast of yt+s based on information
available at time t is

yt+s|t = μ+Ψsut +Ψs+1ut−1 + · · ·

and the forecast error is

yt+s−yt+s|t = ut+s+Ψ1ut+s−1+ · · ·+Ψs−1ut+1.



Using

εt = B
−1ut, Θk = ΨkB

−1

The forecast error in terms of the structural shocks is

yt+s − yt+s|t = B−1εt+s +Ψ1B
−1εt+s−1 +

· · ·+Ψs−1B
−1εt+1

= Θ0εt+s +Θ1εt+s−1 + · · ·+Θs−1εt+1

The forecast errors equation by equation are"
y1t+s − y1t+s|t
y2t+s − y2t+s|t

#
=

⎡⎣ θ
(0)
11 θ

(0)
12

θ
(0)
21 θ

(0)
22

⎤⎦ " ε1t+s
ε2t+s

#
+

· · ·+
⎡⎣ θ

(s−1)
11 θ

(s−1)
12

θ
(s−1)
21 θ

(s−1)
22

⎤⎦ " ε1t+1
ε2t+1

#



For the first equation

y1t+s − y1t+s|t = θ
(0)
11 ε1t+s + · · ·+ θ

(s−1)
11 ε1t+1

+θ
(0)
12 ε2t+s + · · ·+ θ

(s−1)
12 ε2t+1

Since it is assumed that εt ∼ i.i.d. (0,D) where D is
diagonal, the variance of the forecast error in may be
decomposed as

var(y1t+s − y1t+s|t) = σ21(s)

= σ21

Ãµ
θ
(0)
11

¶2
+ · · ·+

µ
θ
(s−1)
11

¶2!

+σ22

Ãµ
θ
(0)
12

¶2
+ · · ·+

µ
θ
(s−1)
12

¶2!
.

The proportion of σ21(s) due to shocks in ε1 is then

ρ1,1(s) =

σ21

Ãµ
θ
(0)
11

¶2
+ · · ·+

µ
θ
(s−1)
11

¶2!
σ21(s)



the proportion of σ21(s) due to shocks in ε2 is

ρ1,2(s) =

σ22

Ãµ
θ
(0)
12

¶2
+ · · ·+

µ
θ
(s−1)
12

¶2!
σ21(s)

.



The forecast error variance decompositions (FEVDs) for
y2t+s are

ρ2,1(s) =

σ21

Ãµ
θ
(0)
21

¶2
+ · · ·+

µ
θ
(s−1)
21

¶2!
σ22(s)

,

ρ2,2(s) =

σ22

Ãµ
θ
(0)
22

¶2
+ · · ·+

µ
θ
(s−1)
22

¶2!
σ22(s)

,

where

var(y2t+s − y2t+s|t) = σ22(s)

= σ21

Ãµ
θ
(0)
21

¶2
+ · · ·+

µ
θ
(s−1)
21

¶2!

+σ22

Ãµ
θ
(0)
22

¶2
+ · · ·+

µ
θ
(s−1)
22

¶2!
.



Identification Using Recursive Causal Orderings

Consider the bivariate SVAR. We need at least one re-
striction on the parameters for identification. Suppose
b12 = 0 so that B is lower triangular. That is,

B =

"
1 0
b21 1

#

B−1 = Θ0 =

"
1 0
−b21 1

#
The SVAR model becomes the recursive model

y1t = γ10 + γ11y1t−1 + γ12y2t−1 + ε1t

y2t = γ20 − b21y1t + γ21y1t−1 + γ22y2t−1 + ε2t

The recursive model imposes the restriction that the value
y2t does not have a contemporaneous effect on y1t. Since
b21 6= 0 a priori we allow for the possibility that y1t has
a contemporaneous effect on y2t.



The reduced form VAR errors ut = B−1εt become

ut =

"
u1t
u2t

#
=

"
1 0
−b21 1

# "
ε1t
ε2t

#

=

"
ε1t

ε2t − b21ε1t

#
.

Claim: The restriction b12 = 0 is sufficient to just identify
b21 and, hence, just identify B.



To establish this result, we show how b21 can be uniquely
identified from the elements of the reduced form covari-
ance matrix Ω. Note"
ω21 ω12
ω12 ω22

#
=

"
1 0
−b21 1

# "
σ21 0
0 σ22

# "
1 −b21
0 1

#

=

"
σ21 −b21σ21

−b21σ21 σ22 + b221σ
2
1

#
.

Then, we can solve for b21 via

b21 = −
ω12
ω21

= −ρω2
ω1

,

where ρ = ω12/ω1ω2 is the correlation between u1 and
u2. Notice that b21 6= 0 provided ρ 6= 0.



Estimation Procedure

1. Estimate the reduced form VAR by OLS equation by
equation:

yt = ba0 +cA1yt−1 + but
bΩ =

1

T

TX
t=1

butbu0t
2. Estimate b21 and B from bΩ :

bb21 = −
bω12bω21 ,bB =

"
1 0bb21 1

#
.

3. Estimate SMA from estimates of a0,A1 and B:

yt = bμ+cΘ(L)bεtbμ = ba0(I2−cA1)−1cΘk = cAk
1
bB−1, k = 0, 1, . . .cD = bB bΩ bB0.



Remark:

Above procedure is numerically equivalent to estimating
the triangular system by OLS equation by equation:

y1t = γ10 + γ11y1t−1 + γ12y2t−1 + ε1t

y2t = γ20 − b21y1t + γ21y1t−1 + γ22y2t−1 + ε2t

Why? Since cov(ε1t, ε2) = 0 by assumption, cov(y1t, ε2t) =
0



Recovering the SMA representation using the Choleski
Factorization of Ω.

Claim: The SVAR representation based on a recursive
causal ordering may be computed using the Choleski fac-
torization of the reduced form covariance matrix Ω.

Recall, the Choleski factorization of the positive semi-
definite matrix Ω is given by

Ω = PP0

P =

"
p11 0
p21 p22

#
A closely related factorization obtained from the Choleski
factorization is the triangular factorization

Ω = TΛT0

T =

"
1 0
t21 1

#
, Λ =

"
λ1 0
0 λ2

#
,

λi ≥ 0, i = 1, 2.



Consider the reduced form VAR

yt = a0 +A1yt−1 + ut,

Ω = E[utu
0
t]

Ω = TΛT0

Construct a pseudo SVAR model by premultiplying by
T−1 :

T−1yt = T−1a0 +T
−1A1yt−1 +T

−1ut

or

Byt = γ0 + Γ1yt−1 + εt

where

B = T−1, γ0 = T
−1a0,

Γ1 = T
−1A1, εt = T

−1ut.



The pseudo structural errors εt have a diagonal covari-
ance matrix Λ

E[εtε
0
t] = T−1E[utu0t]T

−10

= T−1ΩT−10

= T−1TΛT0T−10

= Λ.

In the pseudo SVAR,

B =

"
1 0
b21 1

#
= T−1 =

"
1 0
−t21 1

#
b12 = 0, b21 = −t21



Ordering of Variables

The identification of the SVAR using the triangular fac-
torization depends on the ordering of the variables in yt.
In the above analysis, it is assumed that yt = (y1t, y2t)0

so that y1t comes first in the ordering of the variables.
When the triangular factorization is conducted and the
pseudo SVAR is computed the structural B matrix is

B = T−1 =

"
1 0
b21 1

#
⇒ b12 = 0

If the ordering of the variables is reversed, yt = (y2t, y1t)0,
then the recursive causal ordering of the SVAR is reversed
and the structural B matrix becomes

B = T−1 =

"
1 0
b12 1

#
⇒ b21 = 0



Sensitivity Analysis

• Ordering of the variables in yt determines the recur-
sive causal structure of the SVAR,

• This identification assumption is not testable

• Sensitivity analysis is often performed to determine
how the structural analysis based on the IRFs and
FEVDs are influenced by the assumed causal order-
ing.

• This sensitivity analysis is based on estimating the
SVAR for different orderings of the variables.

• If the IRFs and FEVDs change considerably for dif-
ferent orderings of the variables in yt then it is clear
that the assumed recursive causal structure heavily
influences the structural inference.



Residual Analysis

One way to determine if the assumed causal ordering in-
fluences the structural inferences is to look at the resid-
ual covariance matrix Ω̂ from the estimated reduced form
VAR. If this covariance matrix is close to being diagonal
then the estimated value of B will be close to diagonal
and so the ordering of the variables will not influence the
structural inference.


